
 

A Design Rationale for C++/CLI 
Version 1.1 — February 24, 2006 

(later updated with minor editorial fixes) 

Herb Sutter (hsutter@microsoft.com) 
 

1 Overview 2 
1.1 Key Goals 2 
1.2 Basic Design Forces 3 
1.3 Previous Effort: Managed Extensions 6 
1.4 Organization of This Paper 7 

2 Compiling for CLI: A Brief Survey 8 
2.1 Compiling an ISO C++ Program to Metadata 8 
2.2 Compiling C++/CLI Extensions to Metadata 9 

3 Design Examples In Depth 11 
3.1 CLI Types (e.g., ref class, value class) 11 

3.1.1 Basic Requirements 11 
3.1.2 Managed Extensions Design 13 
3.1.3 C++/CLI Design and Rationale 14 
3.1.4 Other Alternatives (Sample) 18 
3.1.5 Defaults on C++ and CLI Types 20 

3.2 CLI Type Features (e.g., property) 22 
3.2.1 Basic Requirements 22 
3.2.2 Managed Extensions Design 23 
3.2.3 C++/CLI Design and Rationale 23 
3.2.4 Other Alternatives (Sample) 24 

3.3 CLI Heap (e.g., ^, gcnew) 26 
3.3.1 Basic Requirements 26 
3.3.2 Managed Extensions Design 29 
3.3.3 C++/CLI Design and Rationale 30 
3.3.4 Other Alternatives (Sample) 35 

3.4 CLI Generics (generic) 38 
3.4.1 Basic Requirements 38 
3.4.2 Managed Extensions Design 38 
3.4.3 C++/CLI Design and Rationale 38 
3.4.4 Other Alternatives (Sample) 39 

3.5 C++ Features (e.g., template, const) 40 
3.5.1 Basic Requirements 40 
3.5.2 Managed Extensions Design 40 
3.5.3 C++/CLI Design and Rationale 41 

4 Some FAQs 44 

5 Glossary 52 

6 References 53 

Appendix: A Typical Public User Comment 54 
 



2 2006.02.24  A Design Rationale for C++/CLI 

1 Overview 
A multiplicity of libraries, run-time environments, and development environments are essential to 
support the range of C++ applications. This view guided the design of C++ as early as 1987; in 
fact, it is older yet. Its roots are in the view of C++ as a general-purpose language 

      — B. Stroustrup (D&E, p. 168) 

C++/CLI was created to enable C++ use on a major run-time environment, ISO CLI (the standardized 
subset of .NET). 

A technology like C++/CLI is essential to C++’s continued success on Windows in particular. CLI librar-
ies are the basis for many of the new technologies on the Windows platform, including the WinFX class 
library shipping with Windows Vista which offers over 10,000 CLI classes for everything from web ser-
vice programming (Communication Foundation, WCF) to the new 3D graphics subsystem (Presentation 
Foundation, WPF). Languages that do not support CLI programming have no direct access to such librar-
ies, and programmers who want to use those features are forced to use one of the 20 or so other languages 
that do support CLI development. Languages that support CLI include COBOL, C#, Eiffel, Java, Mercury, 
Perl, Python, and others; at least two of these have standardized language-level bindings. 

C++/CLI’s mission is to provide direct access for C++ programmers to use existing CLI libraries and 
create new ones, with little or no performance overhead, with the minimum amount of extra notation, 
and with full ISO C++ compatibility. 

1.1 Key Goals 

Enable C++ to be a first-class language for CLI programming. 

Support important CLI features, at minimum those required for a CLS consumer and CLS extender: CLI 
defines a Common Language Specification (CLS) that specifies the subsets of CLI that a language is ex-
pected to support to be minimally functional for consuming and/or authoring CLI libraries. 

Enable C++ to be a systems programming language on CLI: A key existing strength of C++ is as a systems 
programming language, so extend this to CLI by leaving no room for a CLI language lower than C++ 
(besides ILASM). 

Use the fewest possible extensions. 

Require zero use of extensions to compile ISO C++ code to run on CLI: C++/CLI requires compilers to 
make ISO C++ code “just work” — no source code changes or extensions are needed to compile C++ code 
to execute on CLI, or to make calls between code compiled “normally” and code compiled to CLI instruc-
tions. 

Require few or no extensions to consume existing CLI types: To use existing CLI types, a C++ program-
mer can ignore nearly all C++/CLI features, and typically writes a sprinkling of gcnew and ^ (see also 
Appendix, page 54). Most C++/CLI extensions are used only when authoring new CLI types. 

Use pure conforming extensions that do not change the meaning of existing ISO C++ programs and do 
not conflict with ISO C++ or with C++0x evolution: This was achieved nearly perfectly, including for 
macros. 

Be as orthogonal as possible. 

Observe the principle of least surprise: If feature X works on C++ types it should also seamlessly work on 
CLI types, and vice versa. This was mostly achieved, notably in the case of templates, destructors, and 

 



A Design Rationale for C++/CLI 2006.02.24 3 

other C++ features that do work seamlessly on CLI types; for example, a CLI type can be templated 
and/or be used to instantiate a template, and a CLI generic can match a template template parameter. 

Some unifications were left for the future; for example, a contemplated extension that the C++/CLI de-
sign deliberately leaves room for is to use new and * to (semantically) allocate CLI types on the C++ heap, 
making them directly usable with existing C++ template libraries, and to use gcnew and ^ to (semantically) 
allocate C++ types on the CLI heap. (See §3.3.3.) Note that this would be highly problematic if C++/CLI had 
not used a separate gcnew operator and ^ declarator to keep CLI features out of the way of ISO C++. 

1.2 Basic Design Forces 
Four main programming model design forces are mentioned repeatedly in this paper: 

1. It is necessary to add language support for a key feature that semantically cannot be expressed 
using the rest of the language and/or must be known to the compiler. 

Classes can represent almost all the concepts we need. … Only if the library route is genuinely  
infeasible should the language extension route be followed. 

      — B. Stroustrup (D&E, p. 181) 

In particular, a feature that unavoidably requires special code generation must be known to the compiler, 
and nearly all CLI features require special code generation. Many CLI features also require semantics that 
cannot be expressed in C++. Libraries are unquestionably preferable wherever possible, but either of 
these requirements rules out a library solution. 

Note that language support remains necessary even if the language designer smoothly tries to slide in a 
language feature dressed in library’s clothing (i.e., by choosing a deceptively library-like syntax). For 
example, instead of 

property int x; // A: C++/CLI syntax 

the C++/CLI design could instead have used (among many other alternatives) a syntax like 

property<int> x; // B: an alternative library-like syntax 

and some people might have been mollified, either because they looked no further and thought that it 
really was a library, or because they knew it wasn’t a library but were satisfied that it at least looked like 
one. But this difference is entirely superficial, and nothing has really changed — it’s still a language fea-
ture and a language extension to C++, only now a deceitful one masquerading as a library (which is 
somewhere between a fib and a bald-faced lie, depending on your general sympathy for magical libraries 
and/or grammar extensions that look like libraries). 

In general, even if a feature is given library-like syntax, it is still not a true library feature when: 

• the name is recognized by the compiler and given special meaning (e.g., it’s in the language gram-
mar, or it’s a specially recognized type); and/or 

• the implementation is “magical.” 

Either of these make it something no user-defined library type could be. Note that, in the case of surfacing 
CLI properties in the language, at least one of these must be true even if properties had been exposed 
using syntax like B. (For more details and further discussion of alternatives, see §3.2.) 

Therefore choosing a syntax like B would not change anything about the technical fact of language exten-
sion, but only the political perception. This approach amounts to dressing up a language feature with 
library-like syntax that pretends it’s something that it can’t be. C++’s tradition is to avoid magic libraries 

 



4 2006.02.24  A Design Rationale for C++/CLI 

and has the goal that the C++ standard library should be implementable in C++ without compiler collu-
sion, although it allows for some functions to be intrinsics known to the compiler or processor. C++/CLI 
prefers to follow C++’s tradition, and it uses magical types or functions only in four isolated cases: 
cli::array, cli::interior_ptr, cli::pin_ptr, and cli::safe_cast. These four can be viewed as intrinsics — their 
implementations are provided by the CLI runtime environment and the names are recognized by the 
compiler as tags for those CLI runtime facilities. 

2. It is important not only to hide unnecessary differences, but also to expose essential differences. 

I try to make significant operations highly visible. — B. Stroustrup (D&E, p. 119) 

First, an unnecessary distinction is one where the language adds a feature or different syntax to make 
something look or be spelled differently, when the difference is not material and could have been “pa-
pered over” in the language while still preserving correct semantics and performance. 

For example, CLI reference types can never be physically allocated on the stack, but C++ stack semantics 
are very powerful and there is no reason not to allow the lifetime semantics of allocating an instance of a 
reference type R on the stack and leveraging C++’s automatic destructor call semantics. C++/CLI can, 
and therefore should, safely paper over this difference and allow stack-based semantics for reference type 
objects, thus avoiding exposing an unnecessary distinction. Consider this code for a reference type R: 

void f() { 
  R r;  // ok, conceptually allocates the R on the stack  
  r.SomeFunc(); // ok, use value semantics 

  … 

}   // destroy r here 

In the programming model, r is on the stack and has normal C++ stack-based semantics. Physically, the 
compiler emits something like the following: (See §3.1.3 for more information.) 

// f, as generated by the compiler 
void f() { 
  R^ r = gcnew R; // actually allocated on the CLI heap 
  r->SomeFunc(); // actually uses indirection 
  … 
  delete r;  // destroy r here (memory is reclaimed later) 
} 

Second, it is equally important to avoid obscuring essential differences, specifically not try to “paper 
over” a difference that actually matters but where the language fails to add a feature or distinct syntax. 

For example, although CLI object references are similar to pointers (e.g., they are an indirection to an ob-
ject), they are nevertheless semantically not the same because they do not support all the operations that 
pointers support (e.g., they do not support pointer arithmetic, stable values, or reliable comparison). Pre-
tending that they are the same abstraction, when they are not and cannot be, causes much grief. One of the 
main flaws in the Managed Extensions design is that it tried to reduce the number of extensions to C++ by 
reusing the * declarator, where T* would implicitly mean different things depending the type of T — but 
three different and semantically incompatible things, lurking together under a single syntax. (See §3.3.2.) 

The road to unsound language design is paved with good intentions, among them the papering over of 
essential differences. 

 



A Design Rationale for C++/CLI 2006.02.24 5 

3. Some extensions actively help avoid getting in the way of ISO C++ and C++0x evolution. 

Any compatibility requirements imply some ugliness. — B. Stroustrup (D&E, p. 198) 

A real and important benefit of extensions is that using an extension that the ISO C++ standards commit-
tee (WG21) has stated it does not like and is not interested in can be the best way to stay out of the way of 
C++0x evolution, and in several cases this was done explicitly at WG21’s direction. 

For example, consider the extended for loop syntax: C++/CLI stayed with the syntax for each( T t in c ) 
after consulting the WG21 evolution working group at the Sydney meeting in March 2004 and other 
meetings, where EWG gave the feedback that they were interested in such a feature but they disliked 
both the for each and in syntax and were highly likely never to use it, and so directed C++/CLI to use the 
undesirable syntax in order to stay out of C++0x’s way. (The liaisons noted that if in the future WG21 ever 
adopts a similar feature, then C++/CLI would want to drop its syntax in favor of the WG21-adopted 
syntax; in general, C++/CLI aims to track C++0x.) 

Using an extension that WG21 might be interested in, or not using an extension at all but adding to the 
semantics of an existing C++ construct, is liable to interfere with C++0x evolution by accidentally con-
straining it. For another example, consider C++/CLI’s decision to add the gcnew operator and the ^ de-
clarator. This paper later discusses the technical rationale for this feature in more depth, but for now con-
sider just the compatibility issue: By adding an operator and a declarator that are highly likely never to be 
used by ISO C++, C++/CLI avoids conflict with future C++ evolution (besides making it clear that these 
operations have nothing to do with the normal C++ heap). If C++/CLI had instead specified a new (gc) 
or new (cli) “placement new” as its syntax for allocation on the CLI heap, that choice could have con-
flicted with C++0x evolution which might want to provide additional forms of placement new. And, of 
course, using a placement syntax could and would also conflict with existing code that might already use 
these forms of placement new — in particular, new (gc) is already used with the popular Boehm collector. 
(For other reasons why such a syntax causes technical problems, see §3.3.) 

4. Users rely heavily on keywords, but that doesn’t mean the keywords have to be reserved words. 

My experience is that people are addicted to keywords for introducing concepts to the point where 
a concept that doesn’t have its own keyword is surprisingly hard to teach. This effect is more  
important and deep-rooted than people’s vocally expressed dislike for new keywords. Given a 
choice and time to consider, people invariably choose the new keyword over a clever workaround. 

      — B. Stroustrup (D&E, p. 119) 

When a language feature is necessary, programmers strongly 
prefer keywords. Normally, all C++ keywords are also re-
served words, and taking a new one would break code that 
is already using that word as an identifier (e.g., as a type or 
variable name). 

56
of 
67

Implementation DetailsImplementation Details
Strategies for specifying contextual keywords:Strategies for specifying contextual keywords:

•• Spaced keywords: Courtesy Max Munch, Spaced keywords: Courtesy Max Munch, LexLex Hack & Assoc.Hack & Assoc.
for each    for each    enumenum class/struct    interface class/structclass/struct    interface class/struct
ref class/struct    value class/structref class/struct    value class/struct

•• Contextual keywords that are never ambiguous: They appear Contextual keywords that are never ambiguous: They appear 
in a grammar position where nothing may now appear.in a grammar position where nothing may now appear.

abstract    finally    in    override    sealed    whereabstract    finally    in    override    sealed    where
•• Contextual keywords that can be ambiguous with identifiers: Contextual keywords that can be ambiguous with identifiers: 

““If it can be an identifier, it is.If it can be an identifier, it is.””
delegate    event    delegate    event    initonlyinitonly literal    propertyliteral    property
Surgeon GeneralSurgeon General’’s warning: Known to cause varyings warning: Known to cause varying
degrees of parser pain in compiler laboratory animals.degrees of parser pain in compiler laboratory animals.

Not keywords, but in a namespace scope:Not keywords, but in a namespace scope:
array    array    interior_ptrinterior_ptr pin_ptrpin_ptr safe_castsafe_cast

 
Figure 1: Contextual keywords 

(from [N1557]) 

C++/CLI avoids adding reserved words so as to preserve the 
goal of having pure extensions, but it also recognizes that 
programmers expect keywords. C++/CLI balances these re-
quirements by adding keywords where most are not reserved 
words and so do not conflict with user identifiers (see Figure 
1 and Figure 2, taken from [N1557] slides 7, 8, and 56):1

                                                           
1 For related discussion see also my blog article “C++/CLI Keywords: Under the hood” (November 23, 2003). 

 



6 2006.02.24  A Design Rationale for C++/CLI 

• Spaced keywords. These are reserved words, but can-
not conflict with any identifiers or macros that a user 
may write because they include embedded whitespace 
(e.g., ref class). 

• Contextual keywords. These are special identifiers in-
stead of reserved words. Three techniques were used: 
1. Some do not conflict with identifiers at all because 
they are placed at a position in the grammar where no 
identifier can appear (e.g., sealed). 2. Others can ap-
pear in the same grammar position as a user identifier, 
but conflict is avoided by using a different grammar 
production or a semantic disambiguation rule that fa-
vors the ISO C++ meaning (e.g., property, generic), 
which can be informally described as the rule “if it can 
be a normal identifier, it is.” 3. Four “library-like” 
identifiers are considered keywords when name 
lookup finds the special marker types in namespace cli 
(e.g., pin_ptr). 

Note these make life harder for compiler writers, but that 
was strongly preferred in order to achieve the dual goals of 
retaining near-perfect ISO C++ compatibility by sticking to 
pure extensions and also being responsive to the widespread 
programmer complaints about underscores (see §1.3). 

1.3 Previous Effort: Managed Extensions 
C++/CLI is the second publicly available design to support 
CLI programming in C++. The first attempt was Microsoft’s 
proprietary Managed Extensions to C++ (informally known as “Managed C++”), which was shipped in 
two releases of Visual C++ (2002 and 2003) and continues to be supported in deprecated mode in Visual 
C++ 2005. 

7 
of 
67

Major ConstraintsMajor Constraints
A binding: Not a commentary or an evolution.A binding: Not a commentary or an evolution.

•• No room for No room for ““while wewhile we’’re at itre at it…”…” thinking.thinking.

Conformance: Prefer pure conforming extensions.Conformance: Prefer pure conforming extensions.
•• Nearly always possible, if you bend over backward far Nearly always possible, if you bend over backward far 

enough. Sometimes thereenough. Sometimes there’’s pain, though.s pain, though.
–– Attempt #1: __ugly_keywords. Users screamed and fled.Attempt #1: __ugly_keywords. Users screamed and fled.
–– Now: Keywords that are not reserved words, via various Now: Keywords that are not reserved words, via various 

flavors of contextual keywords.flavors of contextual keywords.

Usability:Usability:
•• More elegant syntax, organic extensions to ISO C++.More elegant syntax, organic extensions to ISO C++.
•• Principle of least surprise. Keep skill/knowledge transferable.Principle of least surprise. Keep skill/knowledge transferable.
•• Enable quality diagnostics when programmers err.Enable quality diagnostics when programmers err.

 

8 
of 
67

Corollary: Basic Hard Call #1Corollary: Basic Hard Call #1
““Pure extensionPure extension”” vs. vs. ““firstfirst--class feelclass feel””??

•• Reserved keywords give a better programmer experience and Reserved keywords give a better programmer experience and 
firstfirst--class feel. But theyclass feel. But they’’re not pure extensions any more.re not pure extensions any more.

Our evaluation: Both purity and naturalness are Our evaluation: Both purity and naturalness are 
essential.essential.
•• So we have to work harder at design and implementation.So we have to work harder at design and implementation.
•• Good news for conformance: Currently down to only three Good news for conformance: Currently down to only three 

reserved words (generic, gcnew, nullptr).reserved words (generic, gcnew, nullptr).
•• Good news for the user: There are other keywords Good news for the user: There are other keywords –– theythey’’re re 

just not reserved words. This retains a firstjust not reserved words. This retains a first--class experience.class experience.
•• Hard work for language designers and compiler writers: Hard work for language designers and compiler writers: 

Extra effort via extra parsing work and a lex hack.Extra effort via extra parsing work and a lex hack.

 
Figure 2: Avoiding both incompatibility and 

underscores via contextual keywords in 
C++/CLI (from [N1557]; note that later generic 

also became a contextual keyword rather than a 
reserved word) 

Because the Managed Extensions design deliberately placed a high priority on C++ compatibility, it did 
two things that were well-intentioned but that programmers objected to: 

• The Managed Extensions wanted to introduce as few language extensions as possible, and ended 
up reusing too much existing but inappropriate C++ notation (e.g., * for pointers). This caused seri-
ous problems where it obscured essential differences, and the design for overloaded syntaxes like * 
was both technically unsound and confusing to use. 

• The Managed Extensions scrupulously used names that the C++ standard reserves for C++ imple-
mentations, notably keywords that begin with a double underscore (e.g., _ _gc). This caused unex-
pectedly strong complaints from programmers, who made it clear that they hated writing double 
underscores for language features. 

Many C++ programmers tried hard to use these features, and most failed. Having the Managed Exten-
sions turned out to be not significantly better for C++ than having no CLI support at all. However, the 
Managed Extensions did generate much direct real-world user experience with a shipping product about 
what kinds of CLI support did and didn’t work, and why; and this experience directly informed 
C++/CLI. 

 



A Design Rationale for C++/CLI 2006.02.24 7 

1.4 Organization of This Paper 
This paper captures a small but representative sample of the experience gained by a number of C++ ex-
perts who have worked on defining bindings between C++ and CLI. 

Section 2 gives a brief overview of issues involved with compiling for a CLI target. 

Section 3 then considers several specific features, chosen as representative examples that cover most CLI 
feature areas. The discussion of each feature includes the relevant CLI requirements, the Managed Exten-
sions design and the experience gained with that in the field, the C++/CLI design and rationale with 
notes about sample design alternatives, and consideration of how exposing the feature via keywords, 
reserved words, or library extensions is appropriate or inappropriate: 

• CLI types (e.g., ref class, value class): Why new type categories are needed, and considerations for 
choosing the right defaults for CLI types. 

• CLI type features (e.g., property): Why new abstractions are needed for some CLI features. 

• CLI heap (e.g., ^, gcnew): Why to add a new declarator and keyword. 

• CLI generics (generic): Why the new genericity feature is distinct from templates, but compatible 
and highly integrated with templates. 

• C++ features (e.g., template, const): Why and how these are made to work on CLI types. 

Finally, section 4 considers some frequently asked questions about C++/CLI. 

 



8 2006.02.24  A Design Rationale for C++/CLI 

2 Compiling for CLI: A Brief Survey 
CLI programs are represented as: 

• Code instructions: Plain code execution control just like you’d find in any typical CPU instruction 
set, including compare, branch, call a subroutine, and so on. 

• Metadata: User-defined types, including inheritance, operators, generics, and so on. 

2.1 Compiling an ISO C++ Program to Metadata 
An ISO C++ program doesn’t have any CLI types in it, so compiling any ISO C++ program to target CLI 
basically involves just emitting CLI instructions.  An ISO C++ program can be compiled as-is to CLI instruc-
tions, including full use of all C++ features including the standard library, multiple inheritance, templates, 
optional garbage collection for the C++ heap, and other features. For example, consider “hello world”: 

#include <iostream> 
int main() { 
  std::cout << “Hello, world!” << std::endl; 
} 

Compiling this code for x86 or for CLI yields similar disassembly listings: 

// x86 disassembly 
_main PROC 
 push ebp 
 mov ebp, esp 
 push OFFSET 
?endl@std@@YAAAV?$basic_ostream@DU?$char
_traits@D@std@@@1@AAV21@@Z ; std::endl 
 push OFFSET $SG13670 
 push OFFSET 
?cout@std@@3V?$basic_ostream@DU?$char_tra
its@D@std@@@1@A ; std::cout 
 call
 ??$?6U?$char_traits@D@std@@@std@@YAA
AV?$basic_ostream@DU?$char_traits@D@std@
@@0@AAV10@PBD@Z ; 
std::operator<<<std::char_traits<char> > 
 add esp, 8 
 mov ecx, eax 
 call
 ??6?$basic_ostream@DU?$char_traits@D@st
d@@@std@@QAEAAV01@P6AAAV01@AAV01@
@Z@Z ; std::basic_ostream<char,std::char_traits 
<char> >::operator<< 
 xor eax, eax 
 pop ebp 
 ret 0 
_main ENDP 

// CLI disassembly (ILASM code) 
.method assembly static int32 main() IL managed { 
  .vtentry 34 : 1 
  .maxstack  2 
  IL_0000:  ldsflda    valuetype 
std.’basic_ostream<char,std::char_traits<char> >‘* __imp_std.cout 
  IL_0005:  ldind.i4 
  IL_0006:  ldsflda    valuetype 
‘<CppImplementationDetails>‘.$ArrayType$$$BY0M@$$CBD 
‘?A0xd1f5badc.unnamed-global-1’ 
  IL_000b:  call       valuetype 
std.’basic_ostream<char,std::char_traits<char> >‘* 
‘std.operator<<<struct std::char_traits<char> >‘(valuetype 
std.’basic_ostream<char,std::char_traits<char> >‘*, int8 *) 
  IL_0010:  ldsfld     int32** 
__unep@?endl@std@@$$FYAAAV?$basic_ostream@DU?$char_tra
its@D@std@@@1@AAV21@@Z$PST04000053 
  IL_0015:  call       valuetype 
std.’basic_ostream<char,std::char_traits<char> >‘* ‘std.basic_-
ostream<char,std::char_traits<char> >.<<‘(valuetype std.’basic-
_ostream<char,std::char_traits<char> >‘*, method unmanaged 
cdecl valuetype std.’basic_ostream<char,std::char_traits<char> >‘* 
*(valuetype std.’basic_ostream<char,std::char_traits<char> >‘*)) 
  IL_001a:  pop 
  IL_001b:  ldc.i4.0 
  IL_001c:  ret 
} 

So, for plain C++ code, targeting the CLI virtual machine can be handled like targeting a processor in-
struction set. (CLI later compiles its instructions in turn to the instruction set of the actual CPU present at 
run time.) 

 



A Design Rationale for C++/CLI 2006.02.24 9 

Note that as an implementation detail all C++ types are typically emitted as opaque array-of-bytes CLI 
value types whose internal members are not visible to the CLI environment. For example, this code: 

class C { 
  int i; 

  void f() { … }; 
  void g() { … }; 
  // … 
}; 

is encoded in metadata as an opaque value type with an explicit size and layout (as opposed to the usual 
CLI default of having the JIT compiler determine the object layout depending on the user’s execution 
environment) and whose members are all hidden from the CLI runtime, that looks something like this: 

// A C++ class is emitted as an opaque value type (note the absence of f and g) 
.class private sequential ansi sealed beforefieldinit C 
  extends [mscorlib]System.ValueType 
{ 
  .pack 0 
  .size 4 
  .custom instance void … MiscellaneousBitsAttribute::.ctor(int32) = ( 01 00 40 00 00 00 00 00 ) 
  .custom instance void … Runtime.CompilerServices.NativeCppClassAttribute::.ctor() = ( 01 00 00 00 )  
  .custom instance void … DebugInfoInPDBAttribute::.ctor() = ( 01 00 00 00 )  
} 

2.2 Compiling C++/CLI Extensions to Metadata 
For a C++/CLI program that authors CLI types, the compiler additionally has to emit the correct meta-
data that describes those types. For example, consider this simple CLI reference type: 

ref class R {  
public: 
  property int x; 
}; 

The C++/CLI compiler has to generate metadata code like this: 

// A CLI type or feature is emitted using the corresponding metadata 
.class private auto ansi beforefieldinit R 
       extends [mscorlib]System.Object 
{ 
  .field private int32 ‘<backing_store>x’ 
  .method public hidebysig specialname rtspecialname instance void .ctor() IL managed { … } 
  .method public hidebysig specialname instance int32 get_x() IL managed { … } 
  .method public hidebysig specialname instance void set_x(int32 __set_formal) IL managed { … } 
  .property instance int32 x() { 
    .get instance int32 R::get_x() 
    .set instance void R::set_x(int32) 
  } 
} 

This paper will show that generating metadata like .property blocks often requires knowledge that the 
source code is using a CLI type or feature rather than just C++ facilities, and that some CLI abstractions 

 



10 2006.02.24  A Design Rationale for C++/CLI 

have to be reflected in the language just to be able to express them correctly in the generated metadata. 
Further, where CLI features have different semantics from the C++ features, they also cannot be repre-
sented correctly in standard C++ alone. (Before looking at the rationale for property in §3.2, consider 
whether it is possible to write a C++ library that would result in the above metadata to be generated, and 
what help you would need from the compiler to write such a library.) 

For completeness, note that  a CLI type can be made visible to a C++/CLI program in one of two ways: 

• As C++ source code, typically via a #include of the class definition. 

• As metadata, via a #using of the assembly the type was compiled to (treating it like any CLI type 
the program wants to use). 

One issue that had to be considered throughout was that these must end up being the same — namely, 
that the same C++ type made accessible using either inclusion model had to have the same meaning. As 
an extra twist, many CLI tools and compilers don’t read private metadata, but private metadata is impor-
tant for C++ (e.g., it’s important to know the names and signatures of private members when there are 
friends, and to apply C++ name lookup rules). 

Finally, note that where the above issues affect C++/CLI-specific features that are represented in meta-
data but that are not part of CLS, they also affect portability between C++/CLI implementations. Of 
course CLI is specifically designed to be a Common Language Infrastructure where even completely dif-
ferent languages can interoperate, so two C++/CLI implementations would more or less automatically be 
compatible in the CLS subset. But it would be a shame if it was not guaranteed that CLI libraries pro-
duced by two different C++/CLI compilers will be fully interoperable also in their implementations of 
C++/CLI-specific extensions. It is important for C++/CLI to set a standard way for compilers to store and 
read metadata for C++/CLI-specific extensions like const that are stored as modopts, modreqs, or other 
special attributes, so that different implementations of C++/CLI can recognize and preserve their mean-
ings. (Note: C++/CLI does not specify binary compatibility between the pure C++ parts of the two im-
plementations, which is left unspecified by the C++ standard.) 

 



A Design Rationale for C++/CLI 2006.02.24 11 

3 Design Examples In Depth 
This section considers specific CLI features and presents:  

• The CLI feature and basic requirements, including where applicable representative metadata that 
must be generated. 

• The Managed Extensions design shipped since Visual C++ 2002, which used fewer extensions, and 
in what ways it proved to be insufficient. 

• The C++/CLI design and rationale. 

• Other major design choices that were considered, both in earlier iterations of C++/CLI, and in 
other design efforts that were abandoned. 

3.1 CLI Types (e.g., ref class, value class) 

10
of 
67

Why a LanguageWhy a Language--Level BindingLevel Binding
Reference types:Reference types:

•• Objects can physically exist only on the gc heap.Objects can physically exist only on the gc heap.
•• Deep virtual calls in constructors.Deep virtual calls in constructors.

Value types:Value types:
•• Cheap to copy, value semantics.Cheap to copy, value semantics.
•• Objects physically on stack, gc heap, & some on native heap.Objects physically on stack, gc heap, & some on native heap.

–– Gc heap: Gc heap: ““Boxed,Boxed,”” fullfull--fledged polymorphic objects (e.g., fledged polymorphic objects (e.g., 
Int32 derives from Int32 derives from System::ObjectSystem::Object, implements interfaces)., implements interfaces).

–– Otherwise: Laid out physically in place (not polymorphic).Otherwise: Laid out physically in place (not polymorphic).

Interfaces:Interfaces:
•• Abstract. Only pure virtual functions, no implementations.Abstract. Only pure virtual functions, no implementations.
•• A lot like normal C++ abstract virtual base classes.A lot like normal C++ abstract virtual base classes.

 
Figure 3: Unique features of the CLI types 

(from [N1557]) 

C++/CLI adds the ref class and value class type categories 
because CLI types do not behave exactly the same way as 
C++ types. (For a summary of some issues expanded upon 
in this section, see Figure 3, taken from [N1557] slide 10.) 

CLI classes and C++ classes share most features in common 
with obvious and familiar meaning. For example, C++ pro-
grammers will not be surprised that CLI types support in-
heritance, member variables, virtual functions, different 
accessibility on different members, user-defined operators 
like operator+, and so on. Most of the differences that do 
exist are small enough that they can be seamlessly papered 
over in a way that preserves all correct semantics and so 
doesn’t hide any essential differences. 

This section discusses some differences between the C++ and CLI type systems and focuses primarily on 
the relationship among the class, ref class, and value class abstractions, with incidental mention of inter-
face class. An addendum to this section covers choosing the right defaults for CLI types. This section does 
not discuss related topics like enum class or interface class in detail. 

3.1.1 Basic Requirements 
CLI has two major kinds of types:

• CLI reference types. These inherently have reference semantics rather than value semantics, and so 
unlike C++ types they are not copy-constructible by default, or at all without some work — CLI it-
self has no notion of copy construction, and instead the usual convention is for the class author to 
write an explicit Clone virtual function that outside code can call to create a new instance initialized 
with the original object’s values. CLI reference type objects can only physically exist on the CLI 
heap. 

• CLI value types. These have a dual nature. Value types are intended to represent simple values like 
numbers that do not have unique object identity and are bitwise-copyable. Normally value objects 
exist in their “unboxed” form where they are laid out directly on the stack or, when members of an 
object, directly embedded in the layout of an object (just like C++ members that are held by value); 
in this form, they are not real big-Oh Objects and do not have vtables. When they need to be 
treated like full-fledged objects (e.g., to perform a call to a CLI interface that the value type imple-

 



12 2006.02.24  A Design Rationale for C++/CLI 

ments), they can be converted into a “boxed” form where they are represented as a real object of 
CLI reference type on the CLI heap, and in this form they do have a vtable. In the CLI, both the 
boxed and unboxed forms have the same name, and there is no way to directly distinguish between 
the two forms programmatically in CLI or in most CLI languages (but there is in C++/CLI; see 
§3.3.3). CLI value types inherit from System::ValueType and cannot be further derived from. Note 
that, as with CLI reference types, copy construction makes no sense for CLI value types either but 
for a different reason, namely the bitwise-copyable assumption; there are places in the CLI where 
the virtual machine itself can make bitwise copies, but where the compiler cannot insert function 
calls in order to faithfully simulate copy construction semantics consistently. 

The following are rules that are common to both kinds of CLI types, but which differ from the rules of 
C++ types: 

• Virtual function dispatch during construction is deep. When a constructor calls a virtual member 
function of its own object, the virtual dispatch is deep — dispatch is to the most-derived override 
available in the actual type of the object being constructed, even if that type’s constructor has not 
yet been run. (C++ used to follow the same rule, but long ago switched to making this virtual dis-
patch shallow — in C++, dispatch is virtual but only to the most-derived override available in the 
base class currently being constructed. This makes the implementation of construction slightly cost-
lier because it can require fixups to vtables, as each further-derived constructor body first resets the 
vtable to point to the overrides that should be visible at that level, but it is arguably safer because it 
avoids callings member functions of unconstructed objects.) 

• Inheritance is always single. A CLI type always has exactly one base class, even if it is just Sys-
tem::Object (the root of the monolithic CLI type hierarchy). However, a CLI type can implement 
any number of CLI interfaces. 

• Inheritance is always public. A CLI type’s base class is always public base class. It is not possible 
for a CLI type to inherit nonpublicly from another CLI type. Indeed, the public nature of inheri-
tance is so ingrained in CLI that “public” is not even represented in the metadata or in the ILASM 
grammar (the CLI instruction language assembler); “public” is just what must always be. 

There are other small semantic differences between CLI types and C++ types, but those are some of the 
major ones. Neither of these kinds of CLI types can be surfaced correctly in the programming model as 
C++ classes, because they do not behave exactly the same way as C++ classes do, and this by itself makes 
new class categories essentially required. In addition, it turns out that the general type of each class also 
needs to be known to a C++ compiler in a class forward declaration, not just an actual class definition, and 
that by itself too is sufficient to make a new class category essentially required.2

This section will focus primarily on CLI reference and value types, but note also that CLI interfaces are a 
third important kind of CLI abstraction. Although they have some subtle semantics that have no exact 
analog in C++, it is almost correct to think of a CLI interface as being the same as a C++ abstract base 
class that is made up of public pure virtual functions and that can inherit from zero or more other such 
abstract base classes. 

                                                           
2 Note that the potential future unification of allocating any type on either the C++ or CLI heap (see §3.3.3) requires knowl-
edge of the type category in forward declarations, because that knowledge is needed to even declare a T* and T^ which 
would have different implementations depending on the type of T (but compatible ones with consistent semantics this time, 
unlike the Managed Extensions). 

 



A Design Rationale for C++/CLI 2006.02.24 13 

3.1.2 Managed Extensions Design 
The Managed Extensions exposed the CLI types as new class categories. In the Managed Extensions  
design: 

• A CLI reference type is declared with __gc class (or __gc struct). 
• A CLI value type is declared with __value class (or __value struct). 
• A CLI interface is declared with __gc __interface. All member functions are implicitly public and 

pure virtual; the keyword virtual and the suffix =0 are allowed but not required. A __gc __interface 
cannot have data members, static members, nonpublic members, or implementations of member 
functions. 

The Managed Extensions followed C++’s class/struct tradition: Analogously to C++, the difference be-
tween a __gc struct and a __gc class (and __value struct and a __value class) is that the default accessibility 
of members and base classes is public for the “struct” form, but private for the “class” form. 

For example: 

// Managed Extensions syntax 
__gc __interface I { }; // CLI interface 
__gc class R : public I { }; // CLI reference type 
__gc class R2 : R { };  // inheritance is public by default (writing “public” is legal but redundant) 
__value class V { };  // CLI value type 

The Managed Extensions did impose restrictions on CLI types. In particular (among others not men-
tioned here): 

• A CLI type cannot have a user-defined destructor, but only a user-defined finalizer. (Unfortunately, 
the finalizer was wrongly called a “destructor” and used the destructor’s ~T syntax in the Managed 
Extensions specification, in both cases following the mistakes made by other languages; this is fixed 
in C++/CLI.) 

• A CLI type cannot be a template, or be used to instantiate a template. 

• A CLI type cannot have a user-defined copy constructor. 

• A CLI type cannot inherit from a C++ class or vice versa. 

• A __gc class cannot define its own operator new, because it is always allocated by the CLI’s own 
runtime allocator. 

There were other reasons the Managed Extensions had to expose new categories of classes, even besides 
the requirement of representing behavioral differences. For example, consider that in the Managed Exten-
sions a T* is actually implemented as either a normal C++ pointer, a CLI object reference, or a CLI interior 
pointer, depending on whether T is a C++ class, CLI reference type, or CLI value type (see §3.3.2). Then 
consider what the compiler should do with this code: 

// alternative: what if CLI types were declared with just “class” (note: not Managed Extensions syntax) 
class C;   // forward declaration — class category of C is so far unknown 
int main() { 
  C* p;   // what would the compiler do with this? 
  … 
} 

If all types were declared with just class, including in forward declarations, then there would be insuf-
ficient information for the compiler to know what to do here, because the compiler has to know what 

 



14 2006.02.24  A Design Rationale for C++/CLI 

kind of pointer implementation to generate for p. (See also §3.1.4 for further discussion on options for 
forward declarations.) So something has to appear in the class declaration, and the minimum possible 
extension is to require the programmer to write one word (e.g., __gc or __value) once on the declaration 
of the class only, to tag that “that set of rules applies to this type,” after which the code that uses the 
type just instantiates and uses objects as usual without any further syntax extensions. One word per 
type for the above-cited rules is about as low-impact as it’s possible to get, and C++/CLI ended up 
following the same pattern. 

A small but meaningful criticism of this syntax is that using a term like “__gc” to distinguish CLI refer-
ence types and interfaces emphasizes the wrong thing: The essential nature of these types is their refer-
ence semantics, not where they are allocated. (Besides, languages can choose to expose non-garbage-
collected semantics for instances of reference types; for example, see §3.3.3 for details on how C++/CLI 
papers over a nonessential difference and allows stack-based lifetime semantics for instances of CLI refer-
ence types.) 

Unlike many other CLI languages that hide pointers by making them implicit, a strength of C++ is that it 
makes indirection explicit (e.g., with *) and so enables the programmer to distinguish between a pointer 
and a pointee. This is directly valuable for expressing the difference between the unboxed and boxed 
forms of a value type, including making boxing and unboxing operations visible: 

// Managed Extensions syntax 
__value class V { }; 
int main() { 
  V v;  // unboxed instance (V) 
  V* p = new V; // create a boxed instance; note explicit syntax for a boxed value type (V*) 
  V v2 = *p;  // explicit unboxing 
  *p = …;  // explicit support for modifying a boxed value type in place (without copying) 
} 

This allows direct language support in C++ for strongly typed boxed values, including for modifying a 
boxed value type in place without copying, which is a feature not available in most other CLI languages. 
(See further notes in §3.1.3.) 

3.1.3 C++/CLI Design and Rationale 

3.1.3.1 Paper over difference that can be hidden (“it just works”) 

C++/CLI has a much smoother integration between CLI types and C++ features: 

• A CLI type can have a real destructor, which as usual is spelled ~T and is seamlessly mapped to the 
CLI Dispose idiom (note: this is nontrivial, and required C++/CLI to influence CLI to modify and 
regularize its pattern). This is perhaps the single most important strength of C++/CLI because it 
makes resource-owning CLI types far easier to use in C++ than in other CLI languages.3 (CLI types 
can of course also have finalizers, and these are correctly distinguished from destructors and 
spelled as !T.) See Figure 4, taken from [N1557] slides 33-36. 

• A CLI type can be a template, can have member function templates, and can be used to instantiate a 
template. (See §3.5.3.) 

                                                           
3 For further discussion, see my blog articles “Destructors vs. GC? Destructors + GC!” (November 23, 2004) and “C++ RAII 
compared with Java Dispose pattern” (July 31, 2004). 

 



A Design Rationale for C++/CLI 2006.02.24 15 

• A ref class can have a user-defined copy constructor 
and/or copy assignment operator. These are emitted 
with modreqs (as are pass-by-value function parame-
ters that use the copying semantics), and so CLI lan-
guages other than C++ that do not support such value 
semantics will ignore these special functions; therefore 
types authored this way will be usable in other lan-
guages, but those languages just won’t allow access to 
the value copying behavior (which is usual in such 
languages). 

To avoid surprise, C++/CLI likewise follows C++’s 
class/struct tradition where the only potential difference is 
the default accessibility of bases and members. 

33
of 
67

Cleanup in C++: Less Code, More ControlCleanup in C++: Less Code, More Control
The CLI state of the art is great for memory.The CLI state of the art is great for memory.
ItIt’’s not great for other resource types:s not great for other resource types:

•• Finalizers usually run too late (e.g., files, database Finalizers usually run too late (e.g., files, database 
connections, locks). Having lots of finalizers doesnconnections, locks). Having lots of finalizers doesn’’t scale.t scale.

•• The Dispose pattern (tryThe Dispose pattern (try--finally, or C# finally, or C# ““usingusing””) tries to ) tries to 
address this, but is fragile, erroraddress this, but is fragile, error--prone, and requires the prone, and requires the 
user to write more code.user to write more code.

Instead of writing tryInstead of writing try--finally or using blocks:finally or using blocks:
•• Users can leverage a destructor. The C++ compiler Users can leverage a destructor. The C++ compiler 

generates all the Dispose code automatically, including generates all the Dispose code automatically, including 
chaining calls to Dispose. (There is no Dispose pattern.)chaining calls to Dispose. (There is no Dispose pattern.)

•• Types authored in C++ are naturally usable in other Types authored in C++ are naturally usable in other 
languages, and vice versa.languages, and vice versa.

•• C++: Correctness by default, potential speedup by choice. C++: Correctness by default, potential speedup by choice. 
(Other: Potential speedup by default, correctness by choice.)(Other: Potential speedup by default, correctness by choice.)

 

34
of 
67

Every type can have a destructor, Every type can have a destructor, ~T()~T()::
•• NonNon--trivial destructor == trivial destructor == IDisposeIDispose. Implicitly run when:. Implicitly run when:

–– A stack based object goes out of scope.A stack based object goes out of scope.
–– A class memberA class member’’s enclosing object is destroyed.s enclosing object is destroyed.
–– A A deletedelete is performed on a pointer or handle. Example:is performed on a pointer or handle. Example:

Object^ o = f();Object^ o = f();
delete o;delete o; // run destructor now, collect memory later// run destructor now, collect memory later

Every type can have a finalizer, Every type can have a finalizer, !T()!T()::
•• The finalizer is executed at the usual times and subject to The finalizer is executed at the usual times and subject to 

the usual guarantees, if the destructor has the usual guarantees, if the destructor has notnot already run.already run.
•• Programs should (and do by default) use deterministic Programs should (and do by default) use deterministic 

cleanup. This promotes a style that reduces finalization cleanup. This promotes a style that reduces finalization 
pressure.pressure.

•• ““Finalizers as a debugging techniqueFinalizers as a debugging technique””: Placing assertions or : Placing assertions or 
log messages in finalizers to detect objects not destroyed.log messages in finalizers to detect objects not destroyed.

Uniform Destruction/FinalizationUniform Destruction/Finalization

 

35
of 
67

Deterministic Cleanup in C++Deterministic Cleanup in C++
C++ example:C++ example:

void Transfer() {void Transfer() {
MessageQueueMessageQueue sourcesource( "server( "server\\\\sourceQueuesourceQueue" );" );
String^ String^ qnameqname = (= (String^)source.Receive().BodyString^)source.Receive().Body;;
MessageQueueMessageQueue dest1dest1( "server( "server\\\\" + " + qnameqname ),),

dest2dest2( "backup( "backup\\\\" + " + qnameqname ););
Message^ message = Message^ message = source.Receivesource.Receive();();
dest1.Send( message );dest1.Send( message );
dest2.Send( message );dest2.Send( message );

}}
•• On exit (return or exception) from Transfer, destructible/ On exit (return or exception) from Transfer, destructible/ 

disposable objects have Dispose implicitly called in disposable objects have Dispose implicitly called in 
reverse order of construction. Here: dest2, dest1, and reverse order of construction. Here: dest2, dest1, and 
source.source.

•• No finalization.No finalization.

 

36
of 
67

Deterministic Cleanup in C#Deterministic Cleanup in C#
Minimal C# equivalent:Minimal C# equivalent:

void Transfer() {void Transfer() {
using(using( MessageQueueMessageQueue source source 

= new = new MessageQueueMessageQueue( "server( "server\\\\sourceQueuesourceQueue" ) " ) ) {) {
String String qnameqname = (= (String)source.Receive().BodyString)source.Receive().Body;;
using(using( MessageQueueMessageQueue

dest1 dest1 = new = new MessageQueueMessageQueue( "server( "server\\\\" + " + qnameqname ),),
dest2 dest2 = new = new MessageQueueMessageQueue( "backup( "backup\\\\" + " + qnameqname ) ) ) {) {

Message Message messagemessage = = source.Receivesource.Receive();();
dest1.Send( message );dest1.Send( message );
dest2.Send( message );dest2.Send( message );

}}
}}

}}

 
Figure 4: Notes on destructors for CLI types 

(from [N1557]) 

3.1.3.2 Expose essential differences 

The C++/CLI design probably follows the Managed Exten-
sions design more closely in this area than in any other. It 
likewise adds a single word on the class declaration, but it 
chooses cleaner names — ones that better convey the essen-
tial nature of CLI reference types. In particular, choosing ref 
correctly conveys that the essential nature of a CLI reference 
type is its reference semantics (see §3.1.2). C++/CLI also gets 
away from the double-underscores that programmers com-
plained about (see §1.3). For example: 

interface class I { }; // CLI interface 
ref class R : public I { }; // CLI reference type 
ref class R2 : R { }; // inheritance is public by default 
 // (“public R” is legal but redundant) 
value class V { }; // CLI value type 

I chose to follow the naming convention of “adjective class” 
for its natural syntactic consistency and because it also ex-
tended cleanly to enum class (which correctly connotes that 
the scoping and strong typing associated with the concept of 
a “class” apply to CLI enums; however, CLI enums are not 
further discussed in this paper): 

  class C; // or “struct” 
 ref class R; // or “ref struct” 
 value class V; // or “value struct” 
 interface class I; // or “interface struct” 
 enum class E; // or “enum struct” 

Note that some argued for breaking this syntactic symmetry 
by changing interface class to ref interface. (See §3.1.4.) 

As with the Managed Extensions, this surfaces the CLI types with the minimum possible intrusiveness, 
where to denote a new CLI type the programmer writes one word (e.g., ref or value, once on the declara-
tion of the class only) to tag that “that set of rules applies,” after which the code that uses the type just 

 



16 2006.02.24  A Design Rationale for C++/CLI 

instantiates and uses objects as usual without any further syntax extensions besides ^ and gcnew. Note 
that this allows natural forward declarations (e.g., ref class R;), which is a requirement (see the discussion 
of forward declarations in §3.1.2). 

Note, however, that C++/CLI does not support user-defined copy construction and copy assignment on 
value types. This is because it turns out that the assumption that CLI value type instances are bitwise 
copyable is inherent in CLI, and CLI has a few places where the runtime has latitude to make bitwise 
copies of value type instances but where the C++/CLI compiler cannot inject code to make a function call 
and so guarantee that the copy constructor or copy assignment operator will be called. Since the compiler 
can’t guarantee that these functions will be called, it would be wrong to let programmers write them and 
have them only mostly work. 

The other two features that were mentioned as not supported in the Managed Extensions are also not 
supported in current C++/CLI, but C++/CLI  deliberately leaves room for them in the future: 

• A CLI type cannot inherit from a C++ class or vice versa, but the door for this was deliberately left 
open as a potential and desirable future unification. (See “mixed types” in the next section.) 

• A __gc class cannot define its own operator new, because it is always allocated by the CLI’s own 
runtime allocator. Here two notable doors are left open for future unifications (see also §3.3.3): 

o In the future C++/CLI might want to complete the unification of allocating any type on any 
heap, and if a CLI type R can be allocated on the C++ heap then of course it would make per-
fect sense to allow the programmer to write an R::operator new that returns an R* and would 
be called (to allocate the proxy object on the C++ heap) whenever new R is used to semanti-
cally allocate an R on the C++ heap. 

29
of 
67

Boxing is implicit and strongly typed:Boxing is implicit and strongly typed:
int^ i = 42;int^ i = 42; // strongly typed boxed value// strongly typed boxed value
Object^ o = i;Object^ o = i; // usual derived// usual derived--toto--base conversions okbase conversions ok
Console::WriteLineConsole::WriteLine( "Two numbers: {0} {1}", ( "Two numbers: {0} {1}", i, 101i, 101 ););

•• i is emitted with type Object + attribute marking it as int.i is emitted with type Object + attribute marking it as int.
WriteLineWriteLine chooses the Object overload as expected.chooses the Object overload as expected.

•• Boxing invokes the copy constructor.Boxing invokes the copy constructor.

UnboxingUnboxing is explicit:is explicit:
•• Dereferencing a V^ indicates the value inside the box, and Dereferencing a V^ indicates the value inside the box, and 

this syntax is also used for this syntax is also used for unboxingunboxing::
int k = int k = *i*i;; // // unboxingunboxing to take a copyto take a copy
int% i2 = int% i2 = *i*i;; // refer into the box (no copy)// refer into the box (no copy)
swap( swap( *i*i, k );, k ); // swap contents of box with stack variable// swap contents of box with stack variable

// (no copy, modifies the contents of box)// (no copy, modifies the contents of box)

Boxing (Value Types)Boxing (Value Types)

 
Figure 5: Direct and natural expression of boxed 

value types (from [N1557]) 

o If experience shows that it can use useful for CLI 
types to be able to write their own custom allo-
cation functions for allocation on the CLI heap, 
the obvious natural way to surface it would be 
to allow programmers to write operator gcnew 
which returns a ^. 

Finally, C++/CLI continues to take advantage of C++’s dis-
tinction between pointers and pointees and its explicit indi-
rection. Like the Managed Extensions, C++/CLI supports a 
direct and natural expression of the difference between the 
unboxed and boxed forms of a value type, and the boxing 
and unboxing operations, this time via the ^ declarator and 
dereferencing: 

value class V { }; 
int main() { 
  V v;  // unboxed instance (V) 
  V^ p = gcnew V; // boxed instance (V^) 
  V v2 = *p;  // explicit unboxing 
  *p = …;  // explicit modify-in-place 
} 

This allows direct language support in C++ for strongly typed boxed values, including for modifying a 
boxed value type in place without copying, which is a feature not available in most other CLI languages. 
However, note that CLI has been evolving in the direction of value type instances being immutable, if 
only because many CLI languages and libraries have made this assumption and/or don’t support a clear 

 



A Design Rationale for C++/CLI 2006.02.24 17 

distinction between the boxed and unboxed forms; for now, however, this direct and natural language 
expression of the dual nature of value types (V vs. V^) is a strength of C++ not available in other CLI 
languages and that shows C++’s usefulness as a system programming language on CLI. (See Figure 5, 
taken from [N1557] slide 29.) 

3.1.3.3 Future unifications 

In the future, it is possible to permit arbitrary cross-inheritance and cross-membership between C++ and 
CLI types (subject only to the CLI rule that a CLI type must have exactly one CLI base class). 

Today, programmers who would like to have one type inherit from, or directly hold a member of, a sec-
ond type from a different type category must hold the would-be base or member subobject as an indi-
rectly held member and write the passthrough functions to “wire it up.” For example, if we want to have 
a CLI type R inherit from a C++ class C, we would write 
something like: 

51
of 
67

Future: Unified Type System, Object ModelFuture: Unified Type System, Object Model
Arbitrary combinations of members and bases:Arbitrary combinations of members and bases:

•• Any type can contain members and/or base classes of any Any type can contain members and/or base classes of any 
other type. Virtual dispatch etc. work as expected.other type. Virtual dispatch etc. work as expected.
–– At most one base class may be of ref/value/mixed type.At most one base class may be of ref/value/mixed type.

•• Overhead (regardless of mixing complexity, including deep Overhead (regardless of mixing complexity, including deep 
inheritance with mixing and virtual overriding at each level):inheritance with mixing and virtual overriding at each level):
–– For each object: At most one additional object.For each object: At most one additional object.
–– For each virtual function call: At most one additional For each virtual function call: At most one additional 

virtual function call.virtual function call.
Pure type:Pure type:

•• The declared type category, members, and bases are The declared type category, members, and bases are 
either all CLI, or all native.either all CLI, or all native.

Mixed type:Mixed type:
•• Everything else. Examples:Everything else. Examples:

ref class Ref : R, public N1, N2 { string s; };ref class Ref : R, public N1, N2 { string s; };
class Native : I1, I2 { class Native : I1, I2 { MessageQueueMessageQueue m; };m; };

 

52
of 
67

Future: Implementing Mixed TypesFuture: Implementing Mixed Types
1 mixed = 1 pure + 1 pure.1 mixed = 1 pure + 1 pure.

ref class M : I1, I2, N1, N2 {ref class M : I1, I2, N1, N2 {
System::StringSystem::String ^S1, ^S2;^S1, ^S2; M* pm = new M;M* pm = new M;
std::stringstd::string s1, s2;s1, s2; M^ M^ hmhm = gcnew M;= gcnew M;

};};

 

53
of 
67

V2 Syntax:V2 Syntax:
ref class ref class RadarFormRadarForm : Form: Form, , publicpublic Native Native {{

std::vector<std::vector<RadarItemRadarItem> items;> items;
};};

•• One safe automated allocation, vs. One safe automated allocation, vs. 
NN fragile handwritten allocations.fragile handwritten allocations.

•• This class is also better because it This class is also better because it 
also has a destructor (implements also has a destructor (implements 
IDisposable). That makes it work IDisposable). That makes it work 
well by default with C++ well by default with C++ 
automatic stack semantics (and C# automatic stack semantics (and C# 
using blocks, and VB/J# dispose using blocks, and VB/J# dispose 
patterns).patterns).

V1 Syntax:V1 Syntax:
private __gc class private __gc class RadarFormRadarForm : public Form {: public Form {

std::vector<std::vector<RadarItemRadarItem>>** items;items;
NativeNative* n* n;;

public:public:
RadarFormRadarForm() :() :

: n( new Native ): n( new Native )
, items( new std::vector<, items( new std::vector<RadarItemRadarItem> )> )
{ /*{ /*……*/ };*/ };

~~RadarFormRadarForm() { () { delete items; delete n;delete items; delete n; }}
void Foo( /*void Foo( /*…… params params ……*/ )*/ )

{ n{ n-->Foo( /*>Foo( /*……*/ ); }*/ ); }
void Bar( /*void Bar( /*…… params params ……*/ )*/ )

{ n{ n-->Bar( /*>Bar( /*……*/ ); }*/ ); }
// etc.// etc.

};};

Future: Result for User CodeFuture: Result for User Code

 
Figure 6: Mixed types as a possible future  

unification (from [N1557]) 

ref class R { 
  C* cImpl; // indirectly hold what would 
 // be the C base class subobject 
public: 
  R() : cImpl( new C ) { } 
  ~R() { !R(); } 
  !R() { delete cImpl; cImpl = 0; } 
  // … etc. for other special functions … 
  int Foo( params ) { return cImpl->Foo( params ); } 
  int Bar( params ) { return cImpl->Bar( params ); } 
  // … etc. for other functions we need passthroughs for … 
}; 

In the future it would be nice to just write: 

// possible future unification  
// (note: not currently C++/CLI) 
ref class R : public C { }; // a mixed type 

For example, in conjunction with the other potential exten-
sion of a unified heap (see §3.3.3), this would allow much 
useful flexibility, including: 

• CLI types that inherit from C++ base classes and can 
be seamlessly passed to existing C++ code that uses 
pointers to those base classes. 

• C++ types that inherit from CLI base classes or imple-
ment CLI interfaces (including generic base classes and 
interfaces) and can be seamlessly and safely passed to 
existing CLI code written in any CLI language. 

The compiler can seamlessly represent this under the covers 
as a two-part object made up of a normal CLI object contain-
ing all of the CLI parts (e.g., the CLI base class, any CLI inter-
faces, any CLI members), and one C++ object containing the 
C++ parts (e.g., the C++ base classes and members). 

 



18 2006.02.24  A Design Rationale for C++/CLI 

Note that there is much detail here that I’m eliding, such as the mechanics for a virtual member function 
of one kind of derived type to override a virtual member function of a different kind of base type, and 
how to then allow further-derived overriding by either kind of derived class without additional perform-
ance penalty. This can be done correctly and with good performance. (See Figure 6, taken from [N1557] 
slides 51-53.) 

This strategy actually followed from a general implementation principle I adopted that greatly clarified 
our reasoning about how to expose the type system in the programming model. The implementation 
principle for heap-based objects was: “CLI objects are always physically on the CLI heap, C++ objects are 
always physically on the C++ heap,” where we could then create programming model semantics on top 
of that implementation choice.4 With this principle I deliberately closed the doors to unworkable flexibil-
ity that until then had been clung to, notably the latitude to lay out C++ objects physically on the CLI 
heap in the future (which can never work; see discussion in §3.3.3). This choice greatly clarified several 
aspects of the design that had been plagued by muddy thinking, and it greatly simplified the C++/CLI 
type system. 

I remember the day I showed the idea for this potential unification on Bjarne Stroustrup’s blackboard. I 
started to draw a picture like [N1557] slide 52, and without waiting for me to finish Bjarne went to his 
bookshelf and opened a book to show where, despite criticism, he had always insisted that C++ must not 
require objects to be laid out contiguously in a single memory block. Others had often questioned the use-
fulness of C++’s leaving that implementation door open for the future, but the mixed type design — where 
parts of the same logical object must be on different physical heaps — vindicates Bjarne’s design judgment. 

3.1.4 Other Alternatives (Sample) 

3.1.4.1 Inheritance from System::Object or System::ValueType 

One option that I tried hard to make work was to exploit the fact that CLI types have known base classes. 
In particular, all CLI types inherit from System::Object, and CLI value types inherit from Sys-
tem::ValueType. So “obviously” any type that inherits from those can be determined to be the correspond-
ing kind of type. 

This is extremely enticing, and one really wants to make it work (at least, I did). But it fails for several 
reasons, some of which will probably be obvious after having read the preceding sections. 

First, although this option is fairly obvious for simple cases: 

// inheritance-tagging rejected alternative (note: not C++/CLI) 
class R : public System::Object { }; // aha, implicitly discover this to be a CLI reference type 
class V : public System::ValueType { }; // aha, implicitly discover this to be a CLI value type 
class C : public SomeNonCliType { }; // aha, implicitly discover this to be a C++ type 

it quickly becomes too opaque and requires knowledge of base classes: 

// inheritance-tagging rejected alternative (note: not C++/CLI) 
class X : public Base { }; // what kind of type is X? need to go look at Base… 

So this alternative at least partly obscures an essential difference, namely that some behaviors are differ-
ent for CLI types. To determine whether C++ or CLI behavior applies to a given class type, the program-
mer must search through its base classes. If that doesn’t convince you, consider templates: 

                                                           
4 Simple value types, including the fundamental types that are both C++ and CLI types (e.g., int), can exist in either heap. 

 



A Design Rationale for C++/CLI 2006.02.24 19 

// inheritance-tagging rejected alternative (note: not C++/CLI) 
template<class Base> 
class X : public Base { }; // X can be either a C++ or CLI type? — problematic

Here, the rules for virtual function lookup during construction (for example) would depend on what kind 
of type Base was. (Some people thought it might be cool to be able to write such a template that can be 
instantiated to be different kinds of types, but suffice it to say that this harbors subtle problems.) 

That inheritance from some (possibly remote) ancestral base class should subtly affect behaviors like vir-
tual function lookup in constructors seemed far too subtle in the end — it reminds me of Einstein’s char-
acterization of quantum entanglement as “spooky action at a distance,” where here by analogy we don’t 
want to expose the uncertainty of an inheritance entanglement to a distant ancestral base. 

Additionally, this approach fails for other reasons, notably that the class category information must be 
known with just a class’s forward declaration (see §3.1.1). That implies that base classes must become part 
of the forward declaration, which is just strange: 

// forward declaration rejected alternative (note: not C++/CLI) 
class X : public Base; // ouch: require base classes to be listed on a forward declaration? 

At this point one spends a few days vainly thinking about successively weirder options, such as using 
syntax like class X : ref; for forward declarations, using a tag to avoid listing the base classes: 

// forward declaration rejected alternative (note: not C++/CLI) 
class X : ref;   // ouch: contextual keyword? could conflict with an actual base name? 

There comes a point where you have to admit that you’re trying too hard. The above was already essen-
tially admitting it had to be an explicit class category, only under a needlessly strange syntax that also 
gratuitously introduced the potential for name clashes with actual base classes and was barely different 
from spelling it ref class X;). It is interesting, though, that starting down this “just see what it derives 
from” path independently leads one to something very like the syntax that was actually adopted. 

Finally, at the time I considered this option I hadn’t yet thought about the potential future unification of 
allowing mixed types having arbitrary membership and inheritance across the type system (see §3.1.3). 
When we got to mixed types I was glad that we hadn’t pursued the alternative just described. It would 
unwittingly have closed the door on this future option for completely unifying the type system, because 
this alternative would have prevented allowing C++ types to inherit from CLI types. For example, con-
sider that under the contemplated future unification of mixed types there is a difference between the fol-
lowing classes R and C, where RBase is a CLI type and CBase is a C++ type: 

// possible future unification (note: not currently C++/CLI) 
 ref class R : public RBase, public CBase { }; // a CLI type that inherits from both RBase and CBase 
 class C : public RBase, public CBase { }; // a C++ type that inherits from both RBase and CBase 

Here, if there was no separate class category for ref class and we tried to rely only on “inheritance from 
System::Object” as a tag to mark CLI types, only the second syntax would have been available, C would 
of necessity implicitly have been a CLI type, and there would be no way to express a type that is in every 
way a C++ type and follows C++ rules (e.g., for safe virtual calls) but happens to want to have a CLI base 
class (e.g., so as to be able to pass instances of this C++ type seamlessly to other CLI code).5

                                                           
5 For further discussion, see my blog entry “Why "ref class X", not just "class X : System::Object"?” (November 18, 2003). 

 



20 2006.02.24  A Design Rationale for C++/CLI 

3.1.4.2 ref interface 
It’s worth noting that some people argued at length in favor of spelling CLI interfaces as ref interface 
instead of interface class, on the grounds that: 

• A CLI interface isn’t really a class, even though it is similar to a C++ abstract base class. 

• Both parts of the term ref interface, taken separately and together, arguably better conveys what a 
CLI interface is. 

I ended up repeatedly rejecting this suggestion because I didn’t agree that it was clearer, and it destroyed 
the syntactic symmetry and teachability of the “adjective class” consistency without any proven advan-
tage. I still think interface class is preferable and that it fits better with the rest of C++/CLI, but for com-
pleteness I should note this objection and point out that future experience could prove me wrong and that 
with “adjective class” I could turn out to be clinging to a foolish consistency. I don’t see such evidence yet 
as of this writing, however, and so far the consistency seems to be beneficial. 

3.1.5 Defaults on C++ and CLI Types 
By definition, a struct is a class in which members are by default public; that is, 

 struct s { … 
is simply shorthand for 

 class s { public: …  
… Which style you use depends on circumstances and taste. I usually prefer to use struct for 
classes that have all data public. 

      — B. Stroustrup (C++PL3e, p. 234) 

The C++ class keyword is technically unnecessary, but was added for an essential reason: To change the 
default accessibility of members and bases. People sometimes complain that class and struct are the same 
thing, because the rationale is not obvious at first glance, but this choice is both correct and important — 
it is the only reasonable way to get both C compatibility and the right defaults for user-defined types. 

In C, all struct members are public. To preserve compatibility with C code, C++ had to preserve that as 
the default for struct; there is no other choice. But public is a terrible default for a user-defined type, 
and a language that supports user-defined types ought instead to encourage strong encapsulation and 
data hiding by default. Having private as a default matters so much that Stroustrup correctly felt it was 
worth the high cost of taking a new keyword just to have a category of user-defined types where the 
default was private. Not only does that make it easier for 
programmers to do the right thing, but the default is im-
portant because it directly influences the mindset of pro-
grammers and the way they think about their code. 

14 
of 
67

Class Declaration ExtensionsClass Declaration Extensions
Abstract and sealed:Abstract and sealed:

ref class A ref class A abstractabstract { };{ }; // abstract even w/o pure virtuals// abstract even w/o pure virtuals
ref class B ref class B sealedsealed : A { };: A { }; // no further derivation is allowed// no further derivation is allowed
ref class C : B { };ref class C : B { }; // error, B is sealed// error, B is sealed

Things that are required anyway are implicit:Things that are required anyway are implicit:
•• Inheritance from ref classes and interfaces is implicitly Inheritance from ref classes and interfaces is implicitly 

public. (Anything else would be an error, so why make the public. (Anything else would be an error, so why make the 
programmer write out something that is redundant?)programmer write out something that is redundant?)
ref class B sealed : A { };ref class B sealed : A { }; // A is a public base class// A is a public base class
ref class B sealed : public A { };ref class B sealed : public A { }; // legal, but redundant// legal, but redundant

•• Interfaces are implicitly abstract, and an interfaceInterfaces are implicitly abstract, and an interface’’s members s members 
are implicitly virtual. (Ditto the above.)are implicitly virtual. (Ditto the above.)
interface class I { int f(); };interface class I { int f(); }; // f is pure virtual// f is pure virtual

CLI enumerations:CLI enumerations:
•• Scoped. Can specify underlying type. No implicit conversion to iScoped. Can specify underlying type. No implicit conversion to int.nt.

 
Figure 7: Why defaults matter  

(from [N1557], note middle of slide) 

The result is that in C++ struct and class are identical ab-
stractions with identical semantics differing only in the de-
fault accessibility of members and base classes. 

In C++/CLI, a ref class’s members are private by default (the 
same as for a C++ class), but inheritance from another ref 
class or an interface class is implicitly public. Further, the 
member functions of an interface class are implicitly public 
and pure virtual. The reasons for having different defaults 
for CLI reference and interface types are stronger than the 

 



A Design Rationale for C++/CLI 2006.02.24 21 

reasons for having different accessibility defaults between C++’s class and struct (see also Figure 7, taken 
from [N1557] slide 14). 

First, it is undesirable to allow defaults that are not only wrong but that can never be right. For example, a 
CLI reference type can only inherit from another CLI reference type publicly; there no possibility for non-
public inheritance, to the point where public is not even written in the metadata or present in the ILASM 
assembler grammar, but is simply inherent and pervasively assumed. 

If C++/CLI had required inheritance from base classes of a ref class to be private by default, then natu-
ral code like the following would be an error because the default accessibility would be an error, and 
the way for the programmer to make it compile would be to explicitly write public in the source code 
even though public inheritance is the only option there is or can ever be: 

// rejected alternative to make the base class implicitly private (note: not C++/CLI) 
ref class R2 : R { // error, if the inheritance is implicitly private  
}; 

Second, it is undesirable to force the programmer to explicitly specify something that admits no other 
option. For example, if interface class member functions were not implicitly virtual and abstract, the pro-
grammer would be gratuitously required to write virtual and =0 (or abstract) on every member function 
declaration — and this would be wholly redundant, because they cannot be otherwise. 

Setting inapplicable and invalid defaults on the basis of claimed consistency with the class defaults would 
be, in the words of Emerson, “a foolish consistency.” Using the same defaults for CLI types, when those 
defaults can never be right and there is no real choice available to the programmer anyway, would be 
“consistent with C++” in only the most naïve sense — rather, it would be inconsistent with C++ and con-
trary to the spirit and sound design of C++, for C++ itself added class for the sole purpose of being able to 
set the right defaults. 

 



22 2006.02.24  A Design Rationale for C++/CLI 

3.2 CLI Type Features (e.g., property) 
C++/CLI adds the property contextual keyword and abstraction because it is necessary to have compiler 
knowledge to recognize the abstraction and generate correct metadata. 

This section discusses some differences between features that apply to CLI types and focuses primarily on 
property. This section does not mention related topics like indexed properties, event, and override. 

3.2.1 Basic Requirements 
A CLI property is a “virtual data member” that actually invokes get/set member functions. This lets lan-
guages give the illusion of modifying data members while actually safely going through functions, and 
allows tools to present richer interaction with objects. 

For a C++/CLI program that authors CLI types, the compiler additionally has to emit the correct meta-
data that describes those types. For example, given a property like: 

// C++/CLI syntax 
property int x; 

The C++/CLI compiler has to generate metadata code like this, where the member functions involved in 
a property are specialnames and a .property block connects them as a single abstraction: 

// ILASM metadata representation 
.field private int32 ‘<backing_store>x’ 
.method public hidebysig specialname instance int32 get_x() IL managed { … } 
.method public hidebysig specialname instance void set_x(int32 __set_formal) IL managed { … } 
.property instance int32 x() { 
  .get instance int32 R::get_x() 
  .set instance void R::set_x(int32) 
} 

This requires the compiler to know that apparently independent “get” and “set” functions are related and 
are intended to form a single property. 

The intent of properties is to allow languages and tools to have the syntactic convenience of having non-
private member data without the dangers of actually exposing the data directly. For example: 

obj.x = 42;  // calls set_x 
int i = obj.x;  // calls get_x 

But this is more than just a syntactic convenience: Unlike data members, properties can be virtual (en-
tirely or for certain operations only). Properties are also particularly useful for version safety — the ability 
to release new versions of a type that are compatible with the earlier version, including the ability to sub-
stitute a new version of the type at run time. Exposing an actual data member not only violates data hid-
ing but also ties calling code to that representation and requires a breaking change to make it a function if 
the programmer later wants to change the representation. Exposing a property, even a default one like the 
above with simple passthroughs, enables changing the get or set implementation, or even change or re-
move the backing store, in a version-compatible way that is transparent to calling code using the earlier 
version of the type. 

A different area where properties have become particularly popular is in GUI-based tools which can use 
type reflection to get a list of an object’s properties and then directly expose the ability to edit them to the 
user of the tool, and changes to the properties correctly execute the appropriate set functions. This usage 
is popular in many environments besides CLI. 

 



A Design Rationale for C++/CLI 2006.02.24 23 

3.2.2 Managed Extensions Design 
Managed Extensions did not support properties as a clear language abstraction. Instead, the programmer 
was required to tag the individual member functions that provide the get and set functionality for the 
property with a special __property keyword and name both functions with a consistent name that cor-
rectly follows the pattern get_... or set_... (and the “…” part of the name has to be exactly the same). The 
compiler then uses this information to recognize the intent and synthesize the property. 

For example, the following class provides a property named Size, although it is not clear when reading the 
code that the compiler silently cobbles together the get_Size and set_Size functions into a new abstraction: 

// Managed Extensions syntax 
__gc class R { 
public: 
  virtual void f() { … } 
  __property int get_Size() {  // 1 
    return size_; 
  } 
  __property void set_Size(int size) { // 2 
    size_ = size; 
  } 
private: 
  int size_; 
}; 

This design tried to use fewer extensions, but by failing to surface an important abstraction it made things 
more difficult, not less difficult. It was also brittle and error-prone in practice; for example, if the pro-
grammer forgets __property one line 1 in the example above then there is still a property but with only a 
setter, or if the name is misspelled get_Siz on line 1 then there are two properties (a read-only one named 
Siz and a write-only one named Size). Compilers can add warnings for some of these errors, but in gen-
eral it’s difficult to give high-quality diagnostic messages about cases like this. 

3.2.3 C++/CLI Design and Rationale 

3.2.3.1 Expose essential differences 

The C++/CLI provides an appropriate property block abstraction to avoid the duplication and other 
pitfalls of the earlier design. For example, a property that surfaces an int member with just passthrough 
semantics can be written out as follows: 

ref class R { 
public: 
  property int Size { 
    int get()   { return size_; } 
    void set( int val ) { size_ = val; } 
  }   
private: 
  int size_; 
}; 

Incidentally, because CLI library authors frequently expose such a trivial “passthrough wrapper” prop-
erty (for example to enable future-proofing for version safety even though no special semantics are yet 
needed), C++/CLI also supports writing the above as a trivial property: 

 



24 2006.02.24  A Design Rationale for C++/CLI 

ref class R { 
public: 
  property int Size; // implicitly generates backing store 
};   // and passthrough get and set 

This form is not only convenient, but lessens the impact on 
portable C++ code, which in this case could for example  
#define property to be nothing for portability. 

Individual get/set functions in the same property can have 
different accessibilities, can be independently virtual or non-
virtual, and can be independently overridden in derived 
classes. Properties can be static or nonstatic. 

Note that property is a contextual keyword that is compati-
ble with all existing C++ code by implementing the “if it can be an identifier, it is” rule. That is, the mean-
ing of existing C++ code like the following that uses property as the name of a type or variable is un-
changed: 

15
of 
67

PropertiesProperties
Basic syntax:Basic syntax:

ref class R {ref class R {
int int mySizemySize;;

public:public:
property int Size {property int Size {
int int getget()() { return { return mySizemySize; }; }
void void setset( int ( int valval )) { { mySizemySize = = valval; }; }

}}
};};
R r;R r;
r.Sizer.Size = 42;= 42; // use like a field; calls r.Size::set(42)// use like a field; calls r.Size::set(42)

Trivial properties:Trivial properties:
ref class R {ref class R {
public:public:
property int Size;property int Size; // compiler// compiler--generatedgenerated

};}; // get, set, and backing store// get, set, and backing store
 

Figure 8: Properties in C++/CLI 
(from [N1557]) 

property x;  // ok, declares a member of type ‘property’ named ‘x’ 
int property; // ok, declares a member of type ‘int’ named ‘property’ 

See also Figure 8, taken from [N1557] slide 15. 

3.2.3.2 Future unifications 

CLI permits extended language-specific get and set functions besides the usual “same-type” versions. As 
noted in [N1557], C++/CLI deliberately leaves open the door of in the future allowing overloading a 
property’s set function so that a property can be assigned to from other kinds of types. For example: 

// possible future unification (note: not currently C++/CLI) 
ref class R { 
public: 
  property Foo Bar { 
    Foo get(); 
    void set( Foo ); 
    void set( int );  // overloaded set function 
    template<class T> // overloaded set function template 
    void set( T ); 
  } 
}; 

This would allow uses like: 

R r; 
r.Bar = someFoo;  // call r.Bar::set(Foo) — supported in C++/CLI today 
r.Bar = 42;   // call r.Bar::set(int) 
r.Bar = someOtherObject; // call r.Bar::set<typeof(someOtherObject)>(…) 

3.2.4 Other Alternatives (Sample) 

3.2.4.1 No keyword 

One alternative is to use a syntax like the one C++/CLI adopted, but without the property keyword: 

 



A Design Rationale for C++/CLI 2006.02.24 25 

// alternative syntax (note: not C++/CLI) 
ref class R { 
public: 
  int Size {  // note: no “property” keyword 
    int get()   { … } 
    void set( int val ) { … } 
  } 
}; 

Essentially, this syntax would connote a “data member with get/set functions.” This is workable, but 
seemed to be too subtle. For one thing, the natural syntax for a trivial property would be empty braces, 
with the following result: 

// alternative syntax (note: not C++/CLI) 
int Size ;  // a data member 
int Size { }   // a trivial property 
void Size() { }  // an empty function 

Also, this alternative syntax does not extend as easily to events, which are like properties but have differ-
ent members (add/remove/raise instead of get/set). Giving the abstraction an explicit name is clearer. 

3.2.4.2 property<int> 

As already mentioned in §1.2, instead of the chosen syntax: 

// C++/CLI syntax (trivial property) 
property int x; 

the C++/CLI design could instead have used (among many other alternatives) a library-seeming syntax 
like the following: 

// alternative pseudo-library syntax (note: not C++/CLI) 
property<int> x; 

But the difference is only superficial. For one thing, this is still a language feature and a language exten-
sion to C++, only now one that pretends to be a library: It requires compiler support and participation 
because the compiler has to know to emit the .property block in metadata. 

Further, this option doesn’t extend to the common case of user-written get and set functions, because 
there is no natural place where those could be written in this syntax without breaking the library illusion. 
For example, either using a special syntax: 

// alternative not-very-pseudo-library syntax (note: not C++/CLI) 
property<int> x { … ??? … } // allow a block abstraction anyway? 

or allowing certain functions to get special handling: 

// alternative not-very-pseudo-library syntax (note: not C++/CLI) 
property<int> x; 
int get_x() { … }  // allow functions that follow a naming pattern and are specially 
void set_x( int ) { … }  // recognized? (see §3.2.2 for some the difficulties with this approach) 

breaks the illusion and shows that property<> is not an ordinary library template. 

 



26 2006.02.24  A Design Rationale for C++/CLI 

3.3 CLI Heap (e.g., ^, gcnew) 
References were introduced primarily to support operator overloading. 

      — B. Stroustrup (D&E, p. 86)  

C++/CLI adds the ^ declarator for two necessary reasons: to support operator overloading, and to cor-
rectly expose the semantics of CLI object references and the CLI heap. It also adds gcnew to distinguish 
the CLI heap clearly from the C++ heap. 

A key goal of C++/CLI was to have near-zero impact on C++ programs that just want to gain access to 
CLI libraries with as little impact to their code as possible, and so syntactic convenience and terseness 
was a more important consideration for ^ than it was for other any other feature. Note that ^ and gcnew 
are essentially the only features in C++/CLI that are needed to use existing CLI libraries; most other 
C++/CLI features are only useful for authoring new CLI types and can be ignored by a programmer who 
is only using existing CLI libraries rather than authoring new ones.  

This section discusses the C++ and CLI heaps and focuses on the relationship among the *, ^, new, and 
gcnew abstractions, as well as the requirements of operator overloading, as a sample of the issues in-
volved with supporting a compacting garbage-collected heap that is not managed by new/delete or mal-
loc/free. This section does not mention related topics like references (& and %, which have an analogous 
rationale), or pin_ptr. 

3.3.1 Basic Requirements 
There are three basic CLI features that bear on the pointer syntax: 

• The nature of the CLI garbage-collected heap. 

• The nature of CLI “pointers” (object references) into that heap. 

• CLI operator overloading. 

The CLI heap is garbage-collected, and allows for implementations to use all major forms of garbage col-
lection techniques — including compacting collection where objects can move (change their memory ad-
dresses) at any time as the garbage collector moves them together to eliminate memory fragmentation.6 
Importantly, note that CLI garbage collection is permitted to change not only the location of objects in 
memory, but also their relative address order. 

As already noted in §3.1.1, CLI has two major kinds of types: 

• CLI reference types which can only physically exist on the CLI heap. 

• CLI value types which have a dual nature, where their “full-fledged object” boxed version can only 
physically exist on the CLI heap, and their normal “plain blittable value” version can only physi-
cally exist on the stack or as directly embedded members of a reference type object on the CLI heap. 

CLI also has two kinds of “pointer” types to refer to heap objects. Both are able to track moving objects, 
and so their values can change at any time. This means that they cannot be compared, and cannot be 
safely cast to another representation that obscures them from the garbage collector (e.g., int, or a disk file) 
and back. They are: 

                                                           
6 Allowing compacting collection is desirable in general because compacting GC has technical benefits, including improving 
application performance by preserving memory locality with better cache behavior, and allowing fast allocation of arbitrar-
ily sized memory requests. 

 



A Design Rationale for C++/CLI 2006.02.24 27 

• CLI object references always refer to a whole object of CLI type on the CLI heap (e.g., it cannot refer to a 
directly held member inside a CLI reference type object, or to an object on the C++ heap). The ob-
ject reference itself can only physically exist on the stack, in static storage, or on the CLI heap (it 
cannot physically exist on the C++ heap, although CLI provides a GCHandle table that can be used 
as a mapping to simulate CLI references existing on the C++ heap). 

• CLI interior pointers can refer to any object (including to a value type member directly embedded in a 
CLI reference object) in any storage location (including the C++ heap). But an interior pointer itself 
can only physically exist on the stack (e.g., it cannot exist on any heap). 

That CLI interior pointers can physically exist only on the stack is such a severe limitation that it essen-
tially rules out using this CLI feature under the covers to represent a language-level pointer abstraction. 
Most of the design discussion will therefore focus on how to deal with CLI object references. 

On the other hand, C++ pointers are modeled on memory addresses and are stable: They point to objects 
whose addresses do not change, and whose addresses can be reliably compared. C++ supports direct 
comparison of pointers into the same object or array, but also comparison of arbitrary pointers via 
std::less. Further, C++ pointers are able to refer to any object in any memory location (although to safely 
point into the CLI heap requires pinning the CLI object so that it does not move), and C++ pointers them-
selves can be stored in any memory location.7

This creates a tension between CLI object reference and C++ pointers: Although CLI object references are 
very similar to pointers (e.g., they are an indirection to an object), they are nevertheless semantically not 
the same because they do not support all the operations that pointers support (e.g., they do not support 
pointer arithmetic, stable values, or reliable comparison), cannot point to the same things, and cannot be 
stored in the same places. Some of these differences can be papered over in a semantically sound way that 
provides consistent abstractions without compromise; other differences cannot be hidden. Pretending that 
the pointer types are the same, when they are not and cannot be, causes much grief, as was demonstrated 
by the Managed Extensions. 

Table 1 summarizes these characteristics. 

In summary, some of these differences can be successfully papered over in the compiler, but some cannot 
be papered over. CLI object references aren’t pointers, and shouldn’t be surfaced as such. 

The third major CLI feature that bears on the design for a pointer syntax is operator overloading. Like 
many platforms and languages, CLI provides for overloadable operators. The aspect of CLI operators that 
is most important to this discussion is that, like all parts of CLI, CLI operators must of course take pa-
rameters of CLI reference types via CLI object references.8 For example: 

// C++/CLI syntax, to illustrate the parameter passing requirements of CLI operators 
ref class R { 
public: 
  static R^ operator+( R ^r, int i ); 
  … 
}; 

                                                           
7 See also my blog article “Q: Aren't C++ pointers alone enough to "handle" GC? A: No.” (November 17, 2003). 
8 There are other aspects of operators that affected the C++/CLI design, notably that the operators must be allowed to be 
static which is also an extension to C++. But unlike the parameter issue above, those other issues don’t affect this section’s 
discussion about why C++/CLI represents pointers into the CLI heap as ^. 

 



28 2006.02.24  A Design Rationale for C++/CLI 

 

 C++ pointers CLI object references CLI interior pointers 

What can it directly 
point to? 

Any object anywhere 
(but if on the CLI 
heap the object must 
be pinned)9

Any whole object (not 
members) on the CLI 
heap 

Any object anywhere 

Where can the pointer 
itself be physically 
stored? 

Anywhere Anywhere but the C++ 
heap 

On the stack only 

Can be reliably  
compared (i.e., if p1 < 
p2 now, it will still be 
true later)? 

Yes No No, except to members 
of the same object or 
array 

Can be stored elsewhere 
(e.g., cast to int, written 
to disk) and brought 
back safely? 

Yes No No 

Table 1: Summary of C++ and CLI pointer abstractions 

This code is emitted in metadata using a special CLI-reserved name, as something like: 

.class … R … { 
  .method public specialname static class R op_Addition( class R r, int32 i ) … { … } 
  … 
} 

This has several implications, most notably that whatever way C++/CLI chooses to expose indirection to 
CLI objects must support operator overloading. Note that C++ had to introduce references (C&) as a new 
form of indirection for similar reasons. As Stroustrup notes: 

References were introduced primarily to support operator overloading. … C passes every function 
argument by value, and where passing an object by value would be inefficient or inappropriate the 
user can pass a pointer. This strategy doesn’t work where operator overloading is used. In that 
case, notational convenience is essential… 

      — B. Stroustrup (D&E, pg. 86)  

In particular, C++ cannot allow overloaded operators that take just C++ pointer parameters, because op-
erators on pointers are already defined by the C++ language; that is, C++ does not let a programmer write 
the “overloaded operator” signature operator+( C*, int ), even if C is a user-defined class type. 

The same considerations Stroustrup mentions apply also to parameters to overloaded CLI operators: 

• Requiring pass-by-value parameters doesn’t work, not only because in general it can be inefficient or 
inappropriate, but specifically it doesn’t work for CLI types because most CLI types aren’t copyable. 

                                                           
9 Note that this is a simplification. Pinning is intended to be used for value types (especially PtrtoStringChars), so that a non-
CLI function can operate on a direct pointer to value type data embedded inside a CLI reference object on the CLI heap. 

 



A Design Rationale for C++/CLI 2006.02.24 29 

• Requiring pass-by-* parameters doesn’t work for the same reason it doesn’t work in plain C++. (As 
already noted, CLI object references can’t legitimately pull off the masquerade of being * pointers 
anyway. But assuming for the moment that CLI object references were exposed using normal C++ 
pointer syntax (*) to pretend they are pointers, that would mean choosing between two undesirable 
options for overloaded operators: a) disallow natural operator overloading syntax (i.e., the pro-
grammer would be required to write op_Addition at least at the point of definition, and not be al-
lowed to use operator+); or b) create a weird special case to allow operator overloading on T* pa-
rameters but only for certain types T, which seems baroque and would contravene C++’s design of 
not permitting such overload syntax.) 

• Requiring pass-by-& parameters doesn’t work because C++ references don’t have the right seman-
tics to be the right indirection (specifically, they aren’t rebindable). 

The goal is to let the programmer use natural operator syntax for CLI operators, and write something like 
the following (where R? is a placeholder for some syntax, and ? is not necessarily a single character): 

R? operator+( R?, R? ); // R is a CLI reference type 
R? r1; 
R? r2; 
r1 + r2;     // calls operator+ 

3.3.2 Managed Extensions Design 
The Managed Extensions design tried to reduce the number of extensions to C++ by reusing the * declara-
tor, where * would implicitly mean different things depending on the type that it points to. In the Man-
aged Extensions design, a T* is: 

• a normal pointer if T is a C++ type; or 

• a CLI object reference if T is a CLI reference type; or 

• a CLI interior pointer if T is a CLI value type.10 

But this turned out to be a bad decision, albeit well-motivated to reduce language additions, because it 
means that T* can mean any of three different and incompatible things depending on the type of T, and so 
it obscures an essential difference. For example: 

// Managed Extensions syntax 

template<typename T>   // if T is a if T is a  if T is a 
void f( T *p ) {    // C++ type CLI ref type CLI value type 

  p->SomeValidMemberFunction();  // ok  ok  ok 
  p++;     // ok  error  ok 
  ptrToObjOnCppHeap->someMember = p; // ok  error  error 
  ptrToObjOnCliHeap->someMember = p; // ok  ok  error 
  set<T*> s;     // ok  error  error 
} 

                                                           
10 This summary suffices to show the difficulties, but it was actually more complicated than this, because this is what you get 
after applying defaulting rules that simplify things and obscure more complex qualification machinery. The Managed Exten-
sions actually allowed explicitly qualifying pointers with __gc or __nogc with confusing rules about which one is the default 
for which kind of pointers to (pointers to pointers to …) particular kinds of types (C++ types, CLI reference types, or CLI 
value types). 

 



30 2006.02.24  A Design Rationale for C++/CLI 

It was an enormous source of confusion to programmers that the Managed Extensions design made 
something look like a pointer that did not really behave like a pointer, but had different semantics. Tying 
a type to a particular heap also conflates two concepts that 
ought to be orthogonal; a storage location ought to be chosen 
per object, not per type. 

Finally, one more significant drawback of the Managed Ex-
tensions pointer qualification was the inability to overload 
operators on CLI classes. CLI libraries define a number of 
useful overloaded operators, and C++ users clearly wanted 
to use this functionality with the natural operator syntax. 
Pointers, however, already have operators defined on them 
(such as equality, less-than, dereference, and arrow). While it 
is conceivable that overloading some operators on pointers 
to CLI types only could be done, it was impossible to do so 
cleanly. 

3.3.3 C++/CLI Design and Rationale 

3.3.3.1 Paper over differences that can be hidden (“it just works”) 

28 
of 
67

Ref Class on the StackRef Class on the Stack
The type of The type of ““%R%R”” is R^.is R^.

R r;R r; // ref object on stack// ref object on stack
f( %r );f( %r ); // call f( Object^ )// call f( Object^ )

Native Unmanaged Heap CLR Managed Heap

R r;
Variable

R

 
Figure 9: CLI reference type on the stack (from 

[N1557]) 

Some differences can, and therefore should, be hidden so as to avoid special language rules. For example, 
it is possible to paper over the difference that CLI reference types are allocated only on the CLI heap. 

C++/CLI allows CLI reference types to be instantiated conceptually on the stack and have full stack-
based semantics in the language, where the programmer writes something like: 

 R r;   // R is a CLI reference type 
and seamlessly gets stack-based semantics even though it is not possible to physically allocate the R object 
on the stack. The compiler physically allocates the CLI reference type on the CLI heap (to satisfy the CLI 
requirement), and stores an object reference on the stack. See Figure 9, taken from [N1557] slide 28. (See 
also §3.1.3.) 

3.3.3.2 Expose essential differences 

The CLI heap is not like the C++ heap, and CLI object references are not like C++ pointers. Above we saw 
prior attempts that tried and failed to unify the two under a single unextended C++ syntax reusing * and 
new. The issue boils down to that we need to surface a CLI abstraction that cannot be expressed in ISO C++ 
alone, and requires some language support. A key goal of C++/CLI was to find the least intrusive extension. 

First, consider CLI object references: They really are not pointers, and can’t be papered over to look like 
them (see §3.3.1 and §3.3.2), and they can’t be implemented as a C++ library (see also §3.3.4), so they had 
to be surfaced as a language abstraction. But they are similar, so they should try to look similar to either 
normal C++ pointers or C++ smart pointers. What is needed is either an abstraction to express a CLI ob-
ject reference directly with identical semantics to the CLI feature, or a different abstraction that has differ-
ent and more desirable semantics but that can correctly hide the CLI semantics under the covers without 
breaking the language abstraction. C++/CLI chose to surface the feature as-is, as there was no benefit to 
surfacing it as a different abstraction. 

The next question was how to spell it: that is, to find the smallest possible language extension to C++ that 
could express what was needed and that didn’t introduce incompatibility with C++. Reusing the pointer 
declarator (*) had already been tried by the Managed Extensions and was known to be a failure, and reus-

 



A Design Rationale for C++/CLI 2006.02.24 31 

ing the reference declarator (&) doesn’t work because references don’t have the right semantics (e.g., 
aren’t rebindable). But to support operator overloading it is highly desirable to expose object references 
under some kind of a pointer-like declarator, so a declarator was needed. 

Stan Lippman was the first to strongly make the case why a new abstraction was needed and why it 
should use a new declarator that was not already used by C++ (and that was unlikely ever be used in 
C++0x evolution, so as to avoid interfering with design choices C++ might make in the future). The set of 
such available declarator symbols is fairly small, and Stan suggested ^, which was adopted after some 
flirtations with other symbols because ^ seemed to most clearly connote a pointer. (It was not chosen 
because ^ was used by Pascal, although Pascal programmers may find it familiar.) Writing an overloaded 
CLI operator therefore can use natural C++ operator declaration syntax instead of something jarringly 
different: 

R^ operator+( R^, R^ ); // R is a CLI reference type 
R^ r1 = ...; 
R^ r2 = ...; 
r1 + r2;     // calls operator+ 

Another reason to use a declarator like ^ is that this would be the most frequently used extension in all of 
C++/CLI, so also for that reason it made sense to choose the terser and arguably more natural syntax that 
also did not pretend to be something it was not, had the cleanest correspondence to pointers both opera-
tionally and visually, and most cleanly supported operator overloading.11

At this point it is important not to fall into the “^ is dereferenced with ^” pitfall. The operations you can 
perform on a ^ (e.g., dereferencing, indirection) are a subset of the operations that are legal on a *, and 
those operations they have in common should be spelled the same way in order to avoid needless diver-
gence and to support writing templates that can deal with either * or ^. For example, just as we can 
dereference a * using the -> operator, we should be able to dereference a ^ using the -> operator too: 

T* p = … ;  
p->f();  // call T::f 
T^ h = … ; 
h->f();  // call T::f 

The pitfall is that it is tempting to say that, just as a pointer declared using * is dereferenced using the unary 
* operator, therefore “naturally a ^ should be dereferenced using the unary ^ operator,” for example: 

// note: not C++/CLI 
T* p = … ; 
(*p).f(); 
T^ h = … ; 
(^h).f();  // the pitfall — not a good idea 

I recall a design session where Bjarne Stroustrup and I were working in his office one afternoon to work 
through alternative syntaxes and semantics for exposing the CLI object reference abstraction. At first, the 

                                                           
11 What about CLI interior pointers? Those are used rarely, and can be more expensive to overall performance because the 
garbage collector has to do more complex accounting to deal with the fact that they could point inside a CLI heap object 
(rather than a whole object, which is easier to track by comparing just start addresses); that is one reason they are only al-
lowed to exist on the stack, to limit their number and lifetime. Therefore it makes sense to surface them as a library-like 
syntax cli::interior_ptr<T>, deliberately making a feature that is less usual also look less usual. For details on what this 
means in the implementation and why it’s still a language feature, see the issues covered in the discussion of the handle<T> 
alternative in §3.3.4, which apply also to cli::interior_ptr. 

 



32 2006.02.24  A Design Rationale for C++/CLI 

foregoing seemed reasonable. The next time we spoke, however, Bjarne suggested changing the design so 
that ^ would be dereferenced instead with the unary * operator, just like pointers, because when he had 
first sat down to write a template that could use either form the problem became evident: 

// Stroustrup’s counterexample (note: not C++/CLI) 
template<typename SomePtrType> 
void f( SomePtrType p ) { 
  p->f() ;  // ok, works whether SomePtrType is a *, ^, or smart pointer type 

  (*p).f();  // error if SomePtrType is a ^ (ok if it’s a * or smart pointer type) 
  (^p).f();  // error if SomePtrType is a * or smart pointer type (ok if it’s a ^) 
  delete p;  // ok, works whether SomePtrType is a *, ^, or smart pointer type 
} 

This made the issue clear: The unary * operator applies more generally than just to the * declarator, even 
though both happen to be spelled using the same symbol in C. Specifically, unary * (along with related 
operations like -> and delete) forms part of the algebra of legal operations on any pointerlike object, 
which in C++ already included both normal pointers and smart pointers.12 So the correct design is what 
Stroustrup suggested and what C++/CLI adopted: 

// corrected, and now C++/CLI 
T* p = … ; 
(*p).f();  // dereference T* with unary * 
T^ h = … ; 
(*h).f();  // dereference T^ with unary * — writing “(^h).f();” is an error, no unary ^ 

This allowed writing agnostic templates that didn’t care whether they were given a *, a ^, or a smart 
pointer — as long as they limited themselves to the subset of operations that were supported on all three, 
they were spelled the same way in each case: 

// Stroustrup’s example now supported in C++/CLI 
template<typename SomePtrType> 
void f( SomePtrType p ) { 
  p->f() ;  // ok, works whether SomePtrType is a *, ^, or smart pointer type 

  (*p).f();  // ok, works whether SomePtrType is a *, ^, or smart pointer type 
  delete p;  // ok, works whether SomePtrType is a *, ^, or smart pointer type 
} 

C++/CLI now had to resist the temptation to “support unary ^ anyway for symmetry” with the same 
meaning as unary *. For one thing, that wouldn’t add any expressive power: Programmers could already 
use unary *. For another, in general I feel it’s a bad thing to introduce two equivalent ways of doing some-
thing when there’s no good reason to do so; besides, it’s always good to leave doors open for the future 
wherever possible, and it could be that someone may discover a useful and compelling meaning for 
unary ^ that is not known today. Experience has shown that preserving C++’s rule that “-> and unary * 
dereference any pointerlike thing” is easy to for programmers to learn, and typically those programmers 
who do try to dereference ^ using unary ^ in their first C++/CLI program just find that it doesn’t work, 
switch to using unary * instead, and never notice it again. 

                                                           
12 Put another way: There’s conceptually a supertype called “pointer-like object” with operations *, ->, and delete, and there 
are subtypes for traditional pointers, smart pointers, and CLI references. These subtypes have their own syntax for declara-
tion (e.g., T*, smart_ptr<T>, and T^) and creation (e.g., new T, gcnew T), but then can be used as-a “pointer-like object.” 

 



A Design Rationale for C++/CLI 2006.02.24 33 

For a summary of the heap and pointer model, see Figure 10, 
taken from [N1557] slides 23 and 24. 

The other major question was how to surface the difference 
that the CLI heap was different from the C++ heap. One 
possibility would have been to just use new, as in: 

// a rejected alternative syntax (note: not C++/CLI) 
R^ r = new R;  // R is a CLI reference type 

The idea is that, if the type is a CLI type, the compiler im-
plicitly decides to allocate it on the CLI heap. This is what 
the Managed Extensions did, and it has two important 
shortcomings: 

• It fails to treat types and heaps orthogonally, but 
bind certain types implicitly to certain heaps. This 
lack of orthogonality closes the door to the future sim-
plification of allowing any type to be allocated concep-
tually on the C++ heap with C++ heap semantics (and 
so make them directly usable to existing C++ template 
libraries that use only * and new) and vice versa. See 
the next subsection for discussion about these future 
simplifications. Rather than saying that certain types 
are always on certain heaps, the CLI heap should be a 
first-class abstraction. 

• It makes the definition of new problematic. In C++ a 
new-expression new T always has the type T* (not T^) and it calls some operator new which re-
turns a * (not a ^). It’s very important to be able to say crisply what something’s type is, and so I 
considered that it would be unusual and arcane to meddle with the specification of the type of 
something as fundamental as new T and operator new by adopting a rule that the type of new T is 
sometimes a * and sometimes a ^, and likewise that operator new should sometimes be written to 
return a * and sometimes to return a ^. It seemed to me that such a lack of clarity about the type of 
the news amounted to intrusive monkeying with a basic feature, and that it would be prone to get 
in the way of ISO C++ and its evolution. 

23 
of 
67

Semantically, a C++ program can create object of Semantically, a C++ program can create object of 
any type any type TT in any storage location:in any storage location:
•• On the native heap (lvalue):On the native heap (lvalue): T* t1 = new T;T* t1 = new T;

–– As usual, pointers (As usual, pointers (**) are stable, even during GC.) are stable, even during GC.
–– As usual, failure to explicitly call As usual, failure to explicitly call deletedelete will leak.will leak.

•• On the gc heap (gcOn the gc heap (gc--lvalue):lvalue): T^ t2 = gcnew T;T^ t2 = gcnew T;
–– Handles (Handles (^̂) are object references (to whole objects).) are object references (to whole objects).
–– Calling Calling deletedelete is optional: "Destroy now, or finalize later."is optional: "Destroy now, or finalize later."

•• On the stack (lvalue), or as a class member:On the stack (lvalue), or as a class member: T t3;T t3;
–– Q: Why would you? A: Next section: Deterministic Q: Why would you? A: Next section: Deterministic 

destruction/dispose is automatic and implicit, hooked to destruction/dispose is automatic and implicit, hooked to 
stack unwinding or to the enclosing objectstack unwinding or to the enclosing object’’s lifetime.s lifetime.

Physically, an object may exist elsewherePhysically, an object may exist elsewhere..

Unified Storage/Pointer ModelUnified Storage/Pointer Model

 

24 
of 
67

PointersPointers
Native pointers (Native pointers (**) and handles () and handles (^̂):):

•• ^̂ is like is like **. Differences: . Differences: ^̂ points to a whole object on the gc points to a whole object on the gc 
heap (gcheap (gc--lvalue), canlvalue), can’’t be ordered, and cant be ordered, and can’’t be cast to/from t be cast to/from 
void* or an integral type. (There is no void^.)void* or an integral type. (There is no void^.)
WidgetWidget** s1 = new Widget;s1 = new Widget; // point to native heap// point to native heap
WidgetWidget^̂ s2 = gcnew Widget;s2 = gcnew Widget; // point to gc heap// point to gc heap
s1s1-->>Length();Length(); // use // use -->> for member accessfor member access
s2s2-->>Length();Length();
((**s1).Length();s1).Length(); // use // use ** to dereferenceto dereference
((**s2).Length();s2).Length();

Use RAII Use RAII pin_ptrpin_ptr to get a to get a ** into the gc heap:into the gc heap:
R^ r = gcnew R;R^ r = gcnew R;
int* p1 = &rint* p1 = &r-->v;  >v;  // error, v is a gc// error, v is a gc--lvaluelvalue
pin_ptr<int> p2 = &rpin_ptr<int> p2 = &r-->v;>v; // ok// ok
CallSomeAPI( CallSomeAPI( p2p2 );); // safe call, CallSomeAPI( int* )// safe call, CallSomeAPI( int* )

 

Figure 10: Summary of the unified heap and 
pointer model in C++/CLI (from [N1557]) 

So what was needed was something like new, but distinct from it, to represent allocation the CLI heap. If 
not new, then what? C++ already supports extensions to new using placement new, so one alternative 
was to use that, for example: 

// other rejected syntaxes for “gcnew” (note: not C++/CLI) 
R^ r = new (gc) R; 
R^ r2 = new (cli) R; 

Of course, one issue is that it has similar problem about “what is the type of new” as the alternative just 
discussed. But this choice could additionally have conflicted with C++0x evolution which might want to 
provide additional forms of placement new, and of course using a placement syntax could and would 
also conflict with existing code that already uses these forms of placement new — in particular, new (gc) 
is already used with the popular Boehm conservative garbage collector for the C++ heap. After all, a key 
goal of C++/CLI is to support all ISO C++ programs with unchanged semantics, and that includes any 
use of optional garbage collection for the C++ heap. 

 



34 2006.02.24  A Design Rationale for C++/CLI 

So C++/CLI chose gcnew to go with ^, and the result looks like: 

T* p = new T; // allocate on C++ heap 
T^ h = gcnew T; // allocate on CLI heap 

In retrospect this should probably have been spelled gc new to avoid taking a reserved word here. Alter-
natively, cli new might have been a slightly better choice, with less connotation that the CLI heap might 
be the only garbage-collected heap (which is not necessarily true today as some C++ implementations 
support conservative garbage collection for the C++ heap, and especially not true if C++0x adds explicit 
support for garbage collection in the future). 

Finally, note that delete does not need a special treatment. Consider that delete is just one of the set of 
valid operations on pointers and handles, just as unary * and -> are. We can and therefore should make 
delete “just work” with the usual meaning of calling the destructor, regardless of the type of pointerlike 
thing it is given (* or ^). 

3.3.3.3 Future unifications 

There are two other notable semantics C++/CLI could support in the future without any new language 
extensions, but that can be added in a way that can be completely papered over by a compiler: 

• Semantically allocating a CLI object on the C++ heap 
using new with C++ heap semantics (including no fi-
nalizers and no guaranteed garbage collection; manual 
memory management with explicit delete is required 
to avoid leaks) and pointing to it with a C++ pointer. 

• Semantically allocating a C++ object on the CLI  heap 
using gcnew with CLI heap semantics (including fi-
nalizers and guaranteed garbage collection) and point-
ing to it with a C++/CLI handle. 

These were deferred from C++/CLI to manage project scope, 
and C++/CLI does not support these features now; it just 
deliberately leaves the door open for adding them in the 
future if there is ever a second edition of C++/CLI. 

Here is how to paper this over: To allow CLI reference types 
to have C++ heap-based semantics in the language, the idea 
is to let the programmer write something like: 

R* r = new R; // R is a CLI reference type 

and seamlessly get C++ heap-based semantics (including the 
need to explicitly delete the object, and the ability to leak it 
by failing to call delete) even though it is not possible to 
physically allocate the R object on the C++ heap. To imple-
ment this, the compiler physically allocates the CLI reference 
object on the CLI heap (to satisfy the  CLI requirement), and 
allocates a proxy object on the C++ heap that contains a 
GCHandle table entry to the actual R object.13 See Figure 11, 
taken from [N1557] slide 27.14

                                                           
13 This is just a simple sketch. There are many other issues a complete design would need to consider, such as to consider 
allowing an implicit conversion from R* to R^ (where R is a CLI reference type) so that CLI functions can be called naturally 

27 
of 
67

Ref Class on Native HeapRef Class on Native Heap
Already implemented as gcroot template.Already implemented as gcroot template.

•• No finalizer will ever run. Example:No finalizer will ever run. Example:
R* pr = new R;R* pr = new R; // ref object on native heap// ref object on native heap

 
Figure 11: CLI reference type on the C++ heap 

(from [N1557]) 

26 
of 
67

Native on the GC HeapNative on the GC Heap
Create a proxy for native object on gc heap.Create a proxy for native object on gc heap.

•• The proxyThe proxy’’s finalizer will call the destructor if needed.s finalizer will call the destructor if needed.
N^ hn = gcnew N;N^ hn = gcnew N; // native object on gc heap// native object on gc heap

 
Figure 12: C++ type on the CLI heap  

(from [N1557]) 

 



A Design Rationale for C++/CLI 2006.02.24 35 

Similarly, to allow C++ types to have CLI heap-based semantics in the language, the idea is to let the pro-
grammer write something like: 

C^ c = gcnew C; // C is a C++ type 

and seamlessly get CLI heap-based semantics even though it is not possible to physically allocate the C 
object on the CLI heap. To implement this, the compiler physically allocates the C++ object on the C++ 
heap as usual, and allocates a CLI proxy object on the CLI heap that contains a pointer to the actual C 
object. See Figure 12, taken from [N1557] slide 26. 

It’s worth noting that, earlier in the C++/CLI design effort, some people tried hard to leave open the pos-
sibility of allocating C++ objects physically on the CLI heap; that is impossible in general, and trying to 
persist in this led to confusions in the type system that have now been avoided and removed. The reason 
why it is impossible to ever place C++ objects directly on the CLI heap is because C++ pointers (including 
this) can’t point to things that move, and in general C++ objects can and do have their addresses taken, 
store or expose pointers to their members, store or expose copies of their this pointers, and so on. At best, 
putting a C++ object physically on the CLI heap would require pinning it for its lifetime, and that is com-
pletely unworkable (see the alternative of “pin everything” in §3.3.4). The right approach is to stick to the 
clarifying simplification that each kind of object physically lives on its own heap in the implementation, 
and allow putting it logically and semantically on the other heap in the programming model (as shown 
above). 

Finally, note that although this papering over can be done in a way that preserves correct and consistent 
semantics without holes or pitfalls, just like with virtual function calls the extra indirection is not free: 
Doing this incurs a double indirection on all C++ “pointers” to CLI objects, and vice versa. But it does 
offer the convenience of using CLI types seamlessly and correctly with existing C++ libraries (e.g., con-
tainer template libraries) that use only new and *, and that do take care to delete C++ heap objects. 

3.3.4 Other Alternatives (Sample) 

3.3.4.1 Double indirection 

A variant of the Managed Extensions design would be to use T* for everything, but if T is a CLI type then 
add an indirection: Make it a real C++ pointer to a nonmoving proxy on the C++ heap that contains a 
GCHandle to the actual object. 

This is similar to Figure 11, with one important difference: If this were the only way to use CLI objects, it 
would be unusable in common situations. Specifically, it would create these two serious issues: 

• Every use of a CLI object would require a double indirection. This would often be unacceptable in 
performance-sensitive code due to poor locality (e.g., due to the indirection itself, and due to cache 
effects). 

• Every CLI object used in a C++ program would be required to obey C++ heap semantics only, in-
cluding manual memory management. CLI objects created in a C++ program would not enjoy gar-
bage collection, and would have to be explicitly deleted or else be leaked.15 It is desirable to have 

                                                                                                                                                                                           

(e.g., SomeCliAPI( r )) without ugly contortions to convert an R* to an R^ by dereferencing the * and applying unary % to get 
a ^ (e.g., SomeCliAPI( %*r )). 
14 Something analogous would also be done for CLI value types, but note that the correct design for supporting V* v = new 
V;, where V can be any kind of value type, is nontrivial and not just an obvious extension of the design for reference types. In 
particular, a correct design for new of value types and pointers to value types must account for: a) subtle issues arising from 
value types’ dual nature (i.e., boxed and unboxed); and b) unlike reference objects, some value objects can exist physically 
on the C++ heap (e.g., Int32 which is a synonym for int). 
15 Specifically, the proxy on the C++ heap keeps the CLI object on the CLI heap alive and so governs the CLI object’s lifetime. 

 



36 2006.02.24  A Design Rationale for C++/CLI 

these C++ heap semantics available; but it is not desirable to have them be required all the time and 
inescapable. 

That is why, although the previous section showed why allowing new of a CLI type is desirable for con-
venience where performance is not critical and C++ heap semantics are acceptable (e.g., to let existing 
C++ code and libraries that use simply new and * to work with CLI types without change), it is not viable 
to make that the only way to use CLI types and would have prevented achieving the goal of enabling 
C++ to be a viable systems programming language on CLI. 

3.3.4.2 Fat pointers 

Another variant of the Managed Extensions design would be to use T* for everything, but if T is a CLI 
type then store more complex information. For example, a T* to a CLI type T  could store both a CLI ob-
ject reference and a CLI interior pointer, as an attempt to let it point at anything; that particular example 
fails to even get out of the gate, however, because such a structure that contains a CLI interior pointer can 
then only exist on the stack which would be even worse at supporting the C++ * pointer abstraction. 

In general, alternatives based on pointers with extra information lead to subtle surprises, such as that 
sizeof(T*) is different depending on the type of T, and that pointer compare-and-swap operations are no 
longer easy to make atomic which is generally unacceptable for concurrent code. The obvious way to get 
around that, in turn, is for the compiler to actually represent the pointer under the covers using an extra 
indirection (e.g., every pointer to a reference type is actually a normal pointer to a fat pointer containing 
actual pointer information about the object), which is a variant of the previous alternative with the same 
drawbacks. 

3.3.4.3 Pin everything 

One frequently suggested option would be to pin every object on the CLI heap so that pointers could just 
refer to CLI heap objects directly and no new abstraction would be necessary. This is completely unwork-
able, because pins interfere with garbage collection and therefore can only be used sparingly and for brief 
periods, such as keeping a pin for the duration of a C++ function call when you need to pass a pointer to 
a CLI heap object to a C++ function that requires a real pointer (and of course that function must not try 
to keep a copy of the pointer because the pin will be released after the function call returns). Conceptu-
ally, a pin is a “sandbar” that a compacting garbage collection pass cannot cross; in pathological cases, a 
pin can in theory prevent memory allocation even when memory is available by preventing collection 
and defragmentation (e.g., pinning an object very near the end of the CLI heap address space and then 
trying to allocate CLI heap memory can fail even when recoverable memory exists beyond the pinned 
object). So pinning everything, which effectively means turning off garbage collection and in general 
never freeing any CLI heap objects, isn’t an option. 

3.3.4.4 handle<T> 

An obvious alternative is to do basically what C++/CLI did, but call it handle<T> instead of T^. Note 
that this is not making it a library; it is still a language feature, only dressed in library-like sheepskin (see 
§1.2). Consider that the compiler still needs to know to emit an object reference, and so has these major 
choices:  

• Recognize handle<T> as a special type, the same way that C++/CLI treats cli::array and 
cli::pin_ptr: If name lookup finds the marker type in namespace cli, have the compiler treat it with 
special meaning. This pretends that conceptually it is a “library type,” even though none of these 
are real library types because their implementations are provided by the CLI runtime environment 
and the names are hardwired into the C++/CLI compiler to be specially recognized as tags for 
those CLI runtime facilities. 

 



A Design Rationale for C++/CLI 2006.02.24 37 

• Implement handle<T> as a real type but with a magical implementation. This could also have 
been done, but doesn’t remove the need to add a language extension, because the internals of han-
dle<T> still can’t be written without having a language extension to surface CLI object references. 
(Note that C++/CLI enables programmers to trivially write such a handle<T> as a passthrough 
wrapper library template if they want to wrap the C++/CLI-specific ^ for better portability, but the 
language feature is needed for the library wrapper type to use internally in its implementation.) 

So handle<T> is still a language feature, since its implementation requires some form of language sup-
port. Given that both handle<T> and T^ are equally language extensions, C++/CLI chose the extension 
with terser and arguably more natural syntax, especially considering that this was going to be by far the 
most frequently used feature of all of C++/CLI; programmers who only want to use CLI libraries might 
never use more than ^ and gcnew. Requiring a handle<T> pseudo-library language syntax would force 
programmers to use a more tedious syntax for a common feature without the actual benefit of really 
avoiding a language extension.16

                                                           
16 For additional discussion about the ^ design and alternatives that were explored, see also Brandon Bray’s blog entry 
“Behind the Design: Handles” (November 17, 2003). 

 



38 2006.02.24  A Design Rationale for C++/CLI 

3.4 CLI Generics (generic) 
C++/CLI adds the generic contextual keyword because CLI 
generics are different from templates, and  because it is nec-
essary for the compiler to recognize CLI generics in order to 
generate correct metadata. Further, C++/CLI cleanly inte-
grates the two kinds of type genericity so that they can work 
powerfully together and each can be used for its strengths, 
alone or in combination. This section avoids repeating points 
already made earlier in this paper about when and why lan-
guage support is required, and focuses on the design for pre-
senting this specific feature in the programming model. 

3.4.1 Basic Requirements 
CLI allows generic types and member functions that are pa-
rameterized by types. Although both templates and generics 
enable forms of type genericity, generics are different from templates in many ways, including those sum-
marized in Table 2. 

41
of 
67

Generics Generics ×× TemplatesTemplates
Both are supported, and can be used together.Both are supported, and can be used together.
Generics:Generics:

•• RunRun--time, crosstime, cross--language, and crosslanguage, and cross--assembly.assembly.
•• Constraint based, less flexible than templates.Constraint based, less flexible than templates.
•• Will eventually support many template features.Will eventually support many template features.

Templates:Templates:
•• CompileCompile--time, C++, and generally intratime, C++, and generally intra--assembly assembly 

(a template and its specializations in one assembly (a template and its specializations in one assembly 
will also be available to friend assemblies).will also be available to friend assemblies).

•• IntraIntra--assembly is not a high burden because you can assembly is not a high burden because you can 
expose templates through generic interfaces (e.g., expose expose templates through generic interfaces (e.g., expose 
a_containera_container<T> via IList<T>).<T> via IList<T>).

•• Supports specialization, unique power programming idioms Supports specialization, unique power programming idioms 
(e.g., template metaprogramming, policy(e.g., template metaprogramming, policy--based design, based design, 
STLSTL--style generic programming).style generic programming).

 
Figure 13: Similarities and differences  

between templates and generics  
(from [N1557]) 

 C++ templates CLI generics 

When and where instantiated Compile time, intra-assembly Run time, cross-assembly 

How and when type checked Partly separately in advance at 
the point where the template is 
defined, and partly for each in-
stantiation at instantiation time 

Always separately in advance 
at the point where the generic 
is defined, for all possible 
instantiations 

Understood by C++ only All CLI languages  
(required for CLS consumers) 

Can be specialized Yes No 

Can have default type parameters Yes No 

Can have non-type parameters Yes No 

Table 2: Summary of some major features of C++ templates and CLI generics 

Both have desirable behaviors, but they are not the same. (See Figure 13, taken from [N1557], slide 41.) 
Nevertheless, the two are closely enough related that any syntax for generics ought not to be surprisingly 
different from C++ templates, and in their area of feature overlap they ought to be able to be used to-
gether. 

3.4.2 Managed Extensions Design 
Not applicable: The Managed Extensions design supports the first edition of ISO CLI, which predates generics. 

3.4.3 C++/CLI Design and Rationale 
Generics cannot be exposed using template<> syntax because they are not templates and do not behave 
the same way. Besides, it is legal and useful in C++/CLI to write both templates and generics of CLI 
types, and so they must be expressed as orthogonal features with distinct syntax. 

 



A Design Rationale for C++/CLI 2006.02.24 39 

Because generics have a similar basic function, however, they ought not to be exposed with a jarringly 
different syntax from templates (which would also prevent their compatible use; see below). Rather, the 
natural syntax that most programmers expect to find is the one C++/CLI chose: 

generic<typename T>  // “<typename T>” or “<class T>”, as with templates 
ref class R { … }; 

To preserve symmetry with C++, typename T and class T can be used to declare generic type parameters. 

Because both generics and templates support type genericity, however, they should be well integrated in 
their area of overlap. In particular: 

• Programmers should be able to write templates that can instantiate both templates and generics. 

• Therefore generics ought to be able to match template template parameters. 

• Templates should be able to inherit from generics, especially from generic interfaces. 

For example: 

42
of 
67

GenericsGenerics

Generics are declared much like templates:Generics are declared much like templates:
generic<typename T>generic<typename T>
where T : IDisposable, where T : IDisposable, IFooIFoo
ref class GR { // ref class GR { // ……
void f() {void f() {
T t;T t;
t.Foot.Foo();();

} // call } // call t.~Tt.~T() implicitly() implicitly
};};

•• Constraints are inheritanceConstraints are inheritance--based.based.

Using generics and templates together works.Using generics and templates together works.
•• Example: Generics can match template Example: Generics can match template templatetemplate paramsparams..

template< template< templatetemplate<class> <class> classclass VV >> // a TTP// a TTP
void f() { V<int> v; /*...use v...*/ }void f() { V<int> v; /*...use v...*/ }
f<GR>();f<GR>(); // ok, matches TTP// ok, matches TTP

 

43
of 
67

STL on the CLISTL on the CLI

C++ enables STL on CLI:C++ enables STL on CLI:
•• Verifiable.Verifiable.
•• Separation of collections and algorithms.Separation of collections and algorithms.

Interoperates with Frameworks library.Interoperates with Frameworks library.
C++ C++ ““for_eachfor_each”” and C# and C# ““for eachfor each”” both work:both work:

stdcli::vectorstdcli::vector<String^> v;<String^> v;
for_eachfor_each( ( v.beginv.begin(), (), v.endv.end(), (), functorfunctor ););
for_eachfor_each( ( v.beginv.begin(), (), v.endv.end(), (), _1 += _1 += ““suffixsuffix”” );); // C++// C++
for_eachfor_each( ( v.beginv.begin(), (), v.endv.end(), (), coutcout << _1<< _1 );); // lambdas// lambdas
g( %v );g( %v ); // call g( IList<String^>^ )// call g( IList<String^>^ )
for eachfor each (String^ s in v) (String^ s in v) Console::WriteLineConsole::WriteLine( s );( s );

 
Figure 14: C++/CLI support for generics 

(from [N1557]) 

template< template<class> class X >  
void f() { 
  X<int> x; // instantiate X (note: one instantiation syntax) 
  // … use x … 
} 
generic<typename T> ref class GR { … }; 
template<typename T> class TC { … }; 
f<GR>(); // ok 
f<TC>(); // ok 

This works, and it enables powerful idioms. For example, 
consider an STL-style vector template that additionally im-
plements a generic CLI List<T> interface: The template can 
be instantiated in C++ code, and then the object can be seam-
lessly passed to CLI code written in an arbitrary CLI lan-
guage that can traverse it naturally using the List<T> inter-
face, and other languages that provide “foreach”-like lan-
guage loop constructs that recognize well-known CLI inter-
faces can use these language loop constructs seamlessly on 
the STL-style vector template instantiation. (See also Figure 
14, taken from [N1557], slides 42 and 43.) 

3.4.4 Other Alternatives (Sample) 

3.4.4.1 Reuse template syntax 

One option would have been to reuse template declarations to implicitly mean generics on CLI types, 
and disallow template-only features despite the template keyword: 

template<typename T> ref class R { … };      // generic? 

This would be wrong because generics do not behave like templates (e.g., they cannot be specialized), so 
this attempts to give an illusion that is both wrong and will quickly become visible to the programmer. 

But this alternative immediately fails for a different reason: It is not orthogonal, and would prevent actu-
ally allowing templates of CLI types — which C++/CLI does in fact support (see §3.1.3). The above code 
is legal C++/CLI, but means that R really is a template whose instantiations are CLI reference types. 

 



40 2006.02.24  A Design Rationale for C++/CLI 

3.5 C++ Features (e.g., template, const) 
A key goal of C++/CLI is orthogonality: To allow C++ features to be used also on CLI types and vice 
versa, so that programmers would not have to remember a quagmire of rules of the form “feature X 
works only on CLI types” and “feature Y works only on C++ types.” Some restrictions of that form are 
necessary, and some are not necessary but did not make the cut for the initial release of C++/CLI — but 
many restrictions of that form can and have been eliminated in C++/CLI. 

The issue is not compiling C++ code to target CLI, for C++/CLI simply supports all of ISO C++ un-
changed and so all C++ features work as usual on C++ types. (Compiling C++ code to target CLI is 
described in §2.1.) Rather, the issue here is imbuing CLI types with extended C++ language-specific 
semantics.  

Although CLI has no inherent support for several important C++ features, including templates and const, 
C++/CLI nevertheless has been able to add support for these features, and it is useful to understand 
when and how they apply (or don’t), as well as doors that have been deliberately left open for future 
unifications. This section focuses on the template and const features as two cases in point to enable a 
discussion about the issues involved with supporting C++ features also for CLI types that have no inher-
ent knowledge or support for them. 

3.5.1 Basic Requirements 
CLI is designed to support many languages and compilers. It therefore has explicit support for adding 
modifiers that mark members and function parameters having different semantics from CLI, and 
C++/CLI makes use of this latitude. There are two important kinds of modifiers: 

• modopt: A “optional modifier” that marks a type or function as having some special semantics be-
yond those recognized by CLI, where a CLI consumer language that does not understand the  
modopt can still use the function correctly. 

• modreq: A “required modifier” that marks a type or function as having some special semantics be-
yond those recognized by CLI, where a CLI consumer language is required to either understand 
and support the modreq or not allow calling the function. (From the viewpoint of code written in 
that language, the effect usually is as though the function didn’t exist; it simply can’t be used cor-
rectly without knowing essential required semantics.) 

Modopts and modreqs are significant in function signatures. In particular parameter types differing only 
in modopts or modreqs are considered different for overloading. See [C++/CLI §33] for further informa-
tion about modreqs and modopts. 

3.5.2 Managed Extensions Design 

3.5.2.1 Templates 

The Managed Extensions design did not support any interaction between templates and CLI types: It did 
not allow templates of CLI types, member templates of CLI types, or instantiating templates with CLI 
types. 

// Managed Extensions restrictions 
class C { }; 
__gc class R { }; 
template<typename T> class TC { }; 
T<C> tc;     // ok 
T<R> tr;     // error 
template<typename T> __gc class TR { } ; // error 

 



A Design Rationale for C++/CLI 2006.02.24 41 

3.5.2.2 const 
The Managed Extensions design did not allow const member functions on a CLI type. It did, however, 
allow a CLI type to have const data members. For example: 

__gc class R1 { 
public: 
  void f() const;    // error 
}; 

__gc class R2 { 
  const int x;    // ok 
public: 
  R() : x( … ) { }    // initialize x 
}; 

3.5.3 C++/CLI Design and Rationale 

3.5.3.1 Templates 

Templates are fully integrated with CLI types and generics and “just work.” From [C++/CLI §30]: 

The template syntax is the same for all types, including CLI class types. Templates on CLI class 
types can be partially specialized, fully specialized, and non-type parameters of any type (subject 
to all the constant-expression and type rules in the C++ Standard) can be used, with the same se-
mantics as specified by the C++ Standard. 

Templates are fully resolved and compiled at compile time, and reside in their own assemblies. 

Within an assembly, templates are implicitly instantiated only for the uses of that template within 
the assembly. 

As described in §3.1.3, C++/CLI allows templates of CLI types, templates instantiated with CLI types, 
argument type deduction for function templates, and all other template features. For a basic example: 

class C { }; 
ref class R { }; 

template<typename T> class TC { }; 
T<C> tc;     // ok 
T<R> tr;     // ok 
template<typename T> ref class TR { } ; // ok 

Like all templates, CLI type templates are instantiated by the compiler at compile time, and for each in-
stantiation the compiler generates a CLI reference type with a suitably mangled unique name. Templates 
can only be instantiated in the same assembly, but an object of the instantiated types can be passed to 
code written in any CLI language (after all, at that point it is just a regular CLI object whose type has a 
funny name). 

Further, as described in §3.4.3, C++/CLI supports a high degree of integration between templates and 
CLI generics. For example, CLI generics can match C++ template template parameters, and C++ tem-
plates can implement CLI generic interfaces or inherit from CLI generic types. For example: 

generic<typename T> 
interface class List { … }; // List is usable by other CLI languages 
template<typename T, typename A = std::allocator<T>> 
ref class vector : List<T> { … }; // vector can be specialized, use default template parameters, etc. 

 



42 2006.02.24  A Design Rationale for C++/CLI 

This has enabled important idioms such as an extended implementation of STL whose container types are 
templates and so can only be instantiated in C++, but once instantiated the container objects can be 
passed to and naturally used by other CLI code even if that code is written in other languages because the 
containers implement well-known CLI generic interfaces. (See Figure 14, slide 43.) 

A CLI type can also have a member function template. For example, consider this code that defines a CLI 
reference type R having a member function template f: 

ref class R { 
public: 
  template<typename T> 
  void f( T t ) { } 
}; 

Here R::f can be instantiated to take a parameter of any kind of type, with usual template type deduction 
in deducible contexts. For example: 

class C { }; 

int main() { 
  R r; 
  C c; 

  r.f( 42 );  // instantiate with fundamental type (deduce T = int) 

  r.f( c );  // instantiate with C++ type (deduce T = C) 

  r.f( gcnew R ); // instantiate with CLI type (deduce T = R^) 
} 

For the above code, the following ILASM shows the instantiations that the compiler generates for the 
different types and how the names are reflected in metadata: 

.class private auto ansi beforefieldinit R extends [mscorlib]System.Object { 
  .method public hidebysig instance void 'f<int>'(int32 t) cil managed { … } 
  .method public hidebysig instance void 'f<C>'(valuetype C t) cil managed { … } 
  .method public hidebysig instance void 'f<R ^>'(class R t) cil managed { … } 
  .method public hidebysig specialname rtspecialname instance void  .ctor() cil managed { … } 
} 

A contemplated future extension is to allow property set functions to be templates (see §3.2.3) 

3.5.3.2 const 
Like the Managed Extensions, C++/CLI does not yet allow const member functions on a CLI type. For 
example: 

ref class R1 { 
public: 
  void f() const;    // error 
}; 

But member functions of a CLI type can have const and volatile parameters, and CLI types are allowed to 
have const and volatile data members. For example: 

 

 



A Design Rationale for C++/CLI 2006.02.24 43 

ref class R2 { 
  const int x;    // ok 
public: 
  R() : x( … ) { }    // initialize x 
  const int f( const int* );   // ok 
}; 

As described in [C++/CLI §33.1.2]: 

The distinction between required and optional modifiers is important to tools (such as compilers) 
that deal with metadata. A required modifier indicates that there is a special semantic to the modi-
fied item, which shall not be ignored, while an optional modifier can simply be ignored. For exam-
ple, volatile-qualified data members shall be marked with the IsVolatile modreq. The presence of 
this modifier cannot be ignored, as all accesses of such members shall involve the use of the vola-
tile. prefixed instruction (see §33.1.5.9 for an example). On the other hand, the const qualifier can 
be modelled with a modopt since a const-qualified data member or a parameter that is a pointer to 
a const-qualified object, requires no special treatment. 

The CLI itself treats required and optional modifiers in the same manner. 

For example, from [C++/CLI §33.1.1]: 

Consider the following class definition: 

public ref class X { 
public: 
  static void F(int* p1) { … } 
  static void F(const int* p2) { … } 
private: 
  static int* p3; 
  static const int* p4; 
}; 

The signatures of these four members are recorded in metadata as follows: 

.method public static void F(int32* p1) … { … } 

.method public static void F(int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst)* p2) … { … } 

.field private static int32* p3 

.field private static int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst)* p4 
So const is supported for CLI types with only minor limitations,17 except primarily for const instances of 
CLI types and const member functions on CLI types. C++/CLI deliberately leaves the door open to sup-
port const instances and const member functions on CLI types in the future, but note: 

• The design for encoding const member functions in metadata is not trivial; for example, CLI does 
not allow putting a modopt or modreq directly on a function. As of this writing, I can think of three 
major alternative techniques, each of which would need to be considered in detail to ensure that it 
works correctly in all cases and don’t unwittingly close doors or cause unwanted interactions. 

• Even when const instances and functions are supported, they can only be applicable to types both 
authored and consumed using a C++/CLI compiler. For example, permitting a const instance is 
useless for all existing CLI types and libraries, because existing libraries have no const functions;  
allowing a const object of such a type means allowing an object you can’t do anything with, be-
cause it has no callable member functions. 

                                                           
17 For example, the current encoding could be improved to distinguish between const* and *const. 

 



44 2006.02.24  A Design Rationale for C++/CLI 

4 Some FAQs 

Why create a technology like C++/CLI? 

To ensure that C++ developers would not be shut out from an important platform, ISO CLI (the leading 
commercial implementation of which is Microsoft’s .NET). 

C++/CLI’s mission is to provide direct access for C++ programmers to use existing CLI libraries and 
create new ones, with little or no performance overhead, with the minimum amount of extra notation, 
and with full ISO C++ compatibility. 

Why is support for CLI important? 

Before joining Microsoft in 2002, I had mostly ignored CLI and .NET and wasn’t very concerned about 
whether C++ supported them well. Then I saw the extensive development efforts and huge investments 
going on for WinFX and Longhorn (now called Windows Vista), and it became clear to me that any lan-
guage that did not support CLI programming well would increasingly be marginalized for programming 
on the Windows platform as a whole. 

CLI libraries are the basis for many of the new technologies and libraries on the Windows platform, 
including the rich (i.e., huge) WinFX class library shipping with Windows Vista which offers over 
10,000 CLI classes for everything from web service programming (Communications Foundation, WCF) 
to the new 3D graphics subsystem (Presentation Foundation, WPF). Languages that do not support CLI 
programming have no direct access to many of these important libraries and are shut out from them. 
Programmers who want to use those ever-richer features, either because of the libraries’ inherent use-
fulness or just to remain competitive in look-and-feel with other software and with Windows itself on 
each new latest release of the operating system, are forced to switch to one of the 20 or so other lan-
guages that do support CLI development, at least for the parts of their applications that use those fea-
tures, even if they would have preferred to continue using C++. Languages that support CLI include 
COBOL, C#, Eiffel, Java, Mercury, Perl, Python, and others; at least two of these have standardized lan-
guage-level bindings. 

Isn’t there lots of non-.NET development still taking place, even on Windows? 

Yes. Of course C++ would not immediately die away completely on Windows even without good CLI 
support, because there is still a place for non-.NET Windows development. But C++ would be shut out 
from most major new features, and that is not a long-term tenable position; more and more programmers 
would be forced to use other languages over time. In the view of many developers, C++ had already been 
marginalized as “legacy only,” and I believe that was something that needed to be fixed. Conversely, I 
realized that C++’s valuable strengths as a programming language (e.g., templates, destructors) would be 
just as important and useful for CLI programming as they have been for programming on other plat-
forms, and that their absence would be a real loss for CLI developers. 

Does CLI support matter for C++ programmers who are not on Windows? 

Not as urgently. Implementations of ISO CLI are available for four major operating systems other than 
Windows, but today most C++ programmers on other platforms do not need to use CLI libraries and they 
can ignore C++/CLI. The indirect benefit for the C++ community as a whole is that keeping C++ relevant 
on an important platform is good for C++ use in general, by enabling programmers who prefer to stay 
with C++ to do so. 

 



A Design Rationale for C++/CLI 2006.02.24 45 

Don’t language extensions fracture the C++ community with dialects? 

That is especially a risk with incompatible extensions that compete with the standard, and this is best 
avoided by sticking to conforming extensions that scrupulously maintain ongoing compatibility with the 
standardized core. 

All C++ compilers add language and library extensions for system-specific details, and each compiler 
adds different ones — this is in itself normal, expected, and when done correctly it is standards-
conforming and doesn’t create competing dialects. The ISO C++ standard is the unifying force that has 
prevented fracturing of the C++ marketplace while specifically allowing for such compiler extensions. 
The threat of competing dialects arises most often in the following cases, all of which exhibit some kind of 
incompatibility with (or absence of) a standardized core: 

• Incompatible variation without an accepted standardized core. This was common particularly in 
the first half of the 1990s, when different pre-Standard C++ compilers used to support features like 
templates under the same syntax but with different semantics. 

• Incompatible extensions that contradict the standardized core. This means that standard-
conforming code breaks or has a different meaning under the extensions, which causes fragmenta-
tion by forcing users to choose between the standard meaning or the competing dialect’s meaning. 

• Attempts to define subsets of the standardized core. These are by definition incompatible, and 
cause fragmentation by forcing users to choose between using the entire standard or only the fea-
tures in the competing subset specification. 

C++ has largely avoided any serious fragmentation because C++ compiler vendors have tended to be 
careful to support the entire standard, and to use pure extensions that do not change the meaning of the 
standardized core and furthermore do not interfere with C++ language and library evolution. C++/CLI 
bends over backwards to be fully compatible with ISO C++ and with C++0x evolution, which it does 
better than any set of extensions to any programming language, standard or otherwise, that I know of. 

The Managed Extensions already existed. Wasn’t that a solution? 

No. The Managed Extensions design was a valiant and well-intentioned effort, but it had serious flaws 
(both technical and aesthetic) that made it not usable in practice. As a result, it was widely rejected by 
programmers. It specified fewer extensions to C++ than C++/CLI does, and that was a part of the prob-
lem; its frugality often obscured essential differences and made it confusing to understand and use. 

Why try to standardize C++/CLI? Isn’t it enough that C++/CLI exists? 

Having a standard enables people to create independent, compatible implementations. It also promotes 
participation and input from the community, and C++/CLI has already benefited from community input. 

CLI itself is an open ISO standard having both proprietary and open source implementations (e.g., Micro-
soft .NET and Rotor/SSCLI, Novell Mono) available on at least five major operating systems (BSD, Linux, 
MacOS X, Solaris, and Windows). Given that C++/CLI exists to support C++ for CLI development, 
C++/CLI should be available where CLI is, and third parties should be able to freely implement it for 
those other platforms if they feel that it is useful to do so. (See also Figure 15, taken from [N1557] slides 
59-62.) 

Interoperability is also a priority for C++/CLI. CLI is designed to be an environment where completely 
different languages can interoperate, and so two C++/CLI implementations would more or less auto-
matically be compatible in the pure-CLI subset. But it would be a shame if it was not guaranteed that CLI 
libraries produced by two different C++/CLI compilers will be fully interoperable also in their uses of 
C++/CLI-specific extensions (e.g., ensuring that const parameters on CLI type member functions are 

 



46 2006.02.24  A Design Rationale for C++/CLI 

expressed and recognized the same way in metadata). So a 
key reason to standardize C++/CLI was to standardize also 
runtime compatibility between C++/CLI implementations 
for C++/CLI-specific features and extensions. (Note: 
C++/CLI does not try to specify binary compatibility be-
tween the pure C++ parts of the two implementations, 
which is left unspecified by the C++ standard.) 

59
of 
67

Why Standardize C++/CLI?Why Standardize C++/CLI?
Primary motivators for C++/CLI standard:Primary motivators for C++/CLI standard:

•• Stability of language.Stability of language.
•• C++ community understands and demands standards.C++ community understands and demands standards.
•• Openness promotes adoption. Openness promotes adoption. 
•• Independent implementations should interoperate.Independent implementations should interoperate.

Same TC39, new TG5: C++/CLI.Same TC39, new TG5: C++/CLI.
•• C++/CLI is a binding between ISO C++ and ISO CLI only.C++/CLI is a binding between ISO C++ and ISO CLI only.
•• Most of TG5Most of TG5’’s seven planned meetings are cos seven planned meetings are co--located with located with 

TG3 (CLI), and both standards are currently on the same TG3 (CLI), and both standards are currently on the same 
schedule.schedule.

 

61
of 
67

The Importance of BindingsThe Importance of Bindings
Bindings for a language to other standards:Bindings for a language to other standards:

•• Demonstrate that a language is important.Demonstrate that a language is important.
•• Promote that languagePromote that language’’s use.s use.

C has standardized bindings to important C has standardized bindings to important 
platforms:platforms:
•• SQL (ISO SC32/WG3, ANSI/INCITS H2):SQL (ISO SC32/WG3, ANSI/INCITS H2):

–– SQL/CLI (Client Level Interface) == ODBC. Antiquated. SQL/CLI (Client Level Interface) == ODBC. Antiquated. 
More safety and security issues than C++.More safety and security issues than C++.

–– Around 1999, there was interest in both C++ and SQL to Around 1999, there was interest in both C++ and SQL to 
specify a C++ binding. Nothing happened.specify a C++ binding. Nothing happened.

•• POSIX (ISO SC22/WG15):POSIX (ISO SC22/WG15):
–– A C API binding to an OS abstraction.A C API binding to an OS abstraction.
–– No longer under active development.No longer under active development.

C++ doesnC++ doesn’’t, even though wet, even though we’’ve tried.ve tried.
 

62
of 
67

The Importance of Bindings (2)The Importance of Bindings (2)
Eiffel and C# have standardized bindings to CLI:Eiffel and C# have standardized bindings to CLI:

•• Eiffel (ECMA TC39/TG4).Eiffel (ECMA TC39/TG4).
•• C# (ECMA TC39/TG2).C# (ECMA TC39/TG2).

C++ has to be a viable firstC++ has to be a viable first--class language for CLI class language for CLI 
development:development:
•• Key Q: Key Q: ““Why should a CLI developer use C++?Why should a CLI developer use C++?””
•• Key A: Key A: ““Great leverage of C++ features and great CLI feature Great leverage of C++ features and great CLI feature 

supportsupport”” (not (not ““imitate Eiffel or C#imitate Eiffel or C#””).).
•• Deliver promise of Deliver promise of CCLI.LI.

OK, so itOK, so it’’s good to make C++ support better.s good to make C++ support better.
But why also standardize?But why also standardize?
•• To ensure independent implementations can interoperate.To ensure independent implementations can interoperate.
•• To ensure open participation.To ensure open participation.

 
Figure 15: A rationale for standardizing 

C++/CLI (from [N1557]) 

Did the C++/CLI committee (TG5) closely coordinate 
C++/CLI’s development with the ISO C++ committee 
(WG21)? 

Yes. TG5’s members are a subset of WG21, including many 
of WG21’ s best-regarded and trusted experts, and TG5 has 
always asked WG21 for direction and worked closely with 
ISO C++. In addition, because this work was related to the 
existing ISO C++ standard, Ecma granted full access to ISO 
members to participate in TG5 meetings and email technical 
discussions, and much input from ISO C++ participants is 
already reflected in C++/CLI. All C++/CLI documents have 
been in the WG21 mailings and available to WG21 national 
body members. TG5 actively worked to eliminate conflicts 
between C++/CLI and both ISO C++ and future C++0x evo-
lution by discussing all overlapping feature proposals at 
WG21’s meetings to get WG21’s input and direction, and 
TG5 followed the WG21 evolution working group’s direc-
tion on how best to stay out of the way of C++0x’s own con-
templated extensions to C++. 

Is C++/CLI a “fork” of C++? 

No. C++/CLI has taken great pains to be fully compatible 
with C++, including with future C++0x evolution, and the 
participants are determined that C++/CLI will continue to 
change as needed to continue to faithfully and compatibly 
track C++ as ISO C++ itself changes in the future. (See pre-
vious question.) 

Is C++/CLI now a standard? 

Yes. C++/CLI is Ecma standard Ecma-372, adopted in December 2005. C++/CLI was then submitted by 
Ecma to ISO as a proposed ISO standard. 

What’s an ISO fast-track submission, and why is C++/CLI pursuing that? 

The fast-track process was created by ISO to facilitate ISO adoption of open standards produced by other 
accredited international standards organizations that follow procedures approved of by ISO (i.e., are rec-
ognized to be legitimately open, produce consensus standards of high quality, etc.); Ecma is one of those 
accredited organizations. The first CLI standard was produced by Ecma and then submitted to ISO for 
fast-track processing, and as of this writing the second edition of the CLI standard is following the same 
process. It was natural that C++/CLI follow the same path as CLI so as to stay close to where CLI was 

 



A Design Rationale for C++/CLI 2006.02.24 47 

being maintained and under active revision, so as to be able to coordinate with it and influence it as 
needed, and for C++/CLI to be available in the same places as CLI. 

But that doesn’t mean that submitting C++/CLI as an ISO fast-track proposal is the best choice or the 
only choice, but just the default choice. Since 2003 TG5 has communicated to WG21 that this was the de-
fault plan along with regular progress updates, and TG5 has actively sought WG21’s consensus direction 
on what WG21 wanted to see happen with C++/CLI, up to and including whether WG21 wanted it to 
take some other route, ranging from not entering ISO at all to having WG21 actually take over ownership 
of the C++/CLI work to do with as it will, and TG5 has left those questions to WG21’s decision. WG21 
hasn’t yet agreed on a consensus, but TG5 has always asked and is continuing to ask for WG21 direction 
on this. 

Why are these extensions called “C++/CLI”? 

Because the extensions are designed to harmonize the features of the ISO C++ and ISO CLI standards. 
C++/CLI seemed to be the most obvious name, connotes putting C++ first before CLI, and deliberately 
avoids the form “adjective C++.” 

I picked C++ because it was short, had nice interpretations, and wasn’t of the form “adjective C.” 

      — B. Stroustrup (D&E, p. 64) 

Until the middle of 2003, the internal name being used was “MC^2” which wanted to connote 
“M[anaged] C[++]” and the ideas of “squared,” “version 2,” and “with a ^.” I thought that was too cute. 
More importantly, one problem Microsoft had already encountered with the name Managed Extensions 
was that people would too often informally shorten the name to “Managed C++,” and then a vocal mi-
nority of people read various incorrect implications into that short form (e.g., that the extensions were 
intended to create a separate or successor language, or that Microsoft was trying to “manage” C++). So I 
tried to get away from any name that had a connection with that shortening (including anything with the 
word “managed” or the letters “MC”), or any new name that itself would be likely to be shortened to 
something like “adjective C++,” because the community had objected to that. In 2002 and 2003 I asked a 
number of WG21 experts about this and no one could come up an alternative they felt would be signifi-
cantly better, so I suggested C++/CLI as the working name because it was short and clear, and no one 
raised any concern about it until after the Ecma standard was ratified in December 2005. 

Some people think “C++/CLI” sounds too much like C++. Couldn’t it be called something else? 

Sure. A request to change the name was raised in January 2006, and TG5 is now consulting WG21 for 
direction at the next WG21 meeting in April 2006. 

Why does C++/CLI seem to add a separate language feature for each feature of CLI subjectively con-
sidered important by the C++/CLI design team? 

Separate features were added only where reusing another C++ or C++/CLI feature couldn’t be made to 
work, and the decision of which features to support was mostly not subjective. 

An essential design goal of C++/CLI was to give C++ programmers first-class support for CLI program-
ming without requiring them to switch to a different language (see §1); otherwise, there would be no 
point to the exercise. The CLI’s Common Language Specification (CLS) sets out a standard list that is the 
consensus of independent experts representing a dozen and more different programming languages, 
including C++, of the minimum subset of CLI features that languages should be expected to support as a 
CLS consumer (able to use existing CLI libraries) and/or CLS extender (able to author new CLI libraries). 

 



48 2006.02.24  A Design Rationale for C++/CLI 

Most of the extensions in C++/CLI are required just to be a conforming CLS consumer and extender. 
Some other features were included in order to reach the additional goal of preserving C++’s position as a 
systems programming language, by leaving no room for a CLI language lower than C++. 

Does CLI just expect languages to conform to its rules, or did CLI seriously make design decisions to 
consider C++? 

CLI has specifically made design decisions to be considerate of C++, including in the CLI type system. 

One example is the way CLI treats members name lookup: CLI supports both HideByName and HideBy-
Sig member function lookup, where a member function f(int) in a derived class either hides all base class 
member functions with the same name f (as in C++) or hides only base class member functions with the 
same signature f(int) (as in many other languages). This was specifically added to enable latitude for 
C++’s hide-by-name lookup rules. 

A related example is the way CLI treats overriding: CLI permits overriding a private virtual function 
specifically because C++ allows those semantics. (Many other languages treat accessibility and overrida-
bility the same way, so that a virtual function must be accessible in order to be overridable.) 

A third example is CLI operators: CLI made a good faith effort to support all the C++ operators, including 
overloaded assignment operators. (Unfortunately, CLI made the mistake of having those operators use 
pass-by-value for both parameters and return values, which does not support chainable assignment op-
erators.) 

Isn’t it true that most of the facilities added could and should have been added as libraries? Did 
the C++/CLI design team just feel that only built-in language facilities would be acceptable to 
programmers? 

No. The two main issues motivating language extensions are that CLI features behave differently enough 
from C++ features that the differences can’t be correctly papered over (as the Managed Extensions tried 
valiantly to do), and/or they require compiler support to recognize the features and do correct code gen-
eration. Normally, programming language design is about finding the right abstractions to surface the 
language’s chosen semantics. In this case, CLI’s abstractions already existed with prescribed semantics 
and metadata representations, which made the design work more about finding the cleanest and most 
seamless way of surfacing the abstractions. 

Why is feature X necessary (or, a language instead of a library feature; or, spelled that way; or, …)? 

See the body of this paper for a rationale of representative C++/CLI features, such as ref class, property, 
^, and generic. 

Is portable C++ code important? Do you recommend that application developers should wrap CLI-
specific code modules that expose portable C++ interfaces to the rest of the application? 

Yes. I strongly recommend this, and I am happy that it is the way the programmers I have seen are actu-
ally using C++/CLI in practice (see Appendix for an example). It is always a good practice to contain 
system-specific code (and even code specific to a third-party library vendor) in system-specific modules 
that are wrapped with portable C++ interfaces. I always did this when I developed commercial third-
party software products; it insulates the application from changes in the underlying system or libraries 
and lets the developer switch implementations more readily. Note that a technology like C++/CLI is still 
necessary internally to implement those wrappers because you can’t use CLI libraries without compiler 
support, but it’s a good thing to use those extensions only in the places that need to use CLI. 

 



A Design Rationale for C++/CLI 2006.02.24 49 

Doesn’t C++/CLI add considerable confusion by changing some of C++ rules for CLI classes? For ex-
ample, with CLI types, inheritance is public instead of private by default, there are new conversion 
functions, and virtual function dispatch during construction and destruction works differently. 

No, and this question reflects a basic misunderstanding. C++/CLI doesn’t change C++ rules; it faithfully 
preserves correct C++ rules for C++ types, and correct CLI rules where they are inherent for CLI types. 
The features mentioned above are aspects of how CLI types inherently do behave that can’t be fully hid-
den behind the programming model. 

The lack of direct expression of such essential behaviors of CLI types was one of the reasons C++ was 
unusable and irrelevant on the ISO CLI platform before C++/CLI. Note that the Managed Extensions 
designers tried to paper over too many of such differences, and the result based on experience in the field 
with two shipped releases is that this failed to work for programmers and caused great confusion. 

Note that C++/CLI can and does nonintrusively add C++ features onto CLI types, using the CLI’s facili-
ties that support such extended semantics. For example, C++/CLI enables CLI reference types to be 
templates, have member function templates, have copy constructors and copy assignment operators, 
and have const data members and function parameters. Also, wherever possible C++ rules are preferred 
even for CLI types. For example, when searching through base classes to look up the name of a member 
function, C++/CLI first applies only C++ hide-by-name rules; only if that fails to find a candidate, so that 
the code would be an error in the pure C++ rules, does it fall back to repeat the lookup applying hide-by-
signature lookup rules which makes more function names visible. 

What a language usually cannot do is change existing CLI behaviors like the above that are inherent in 
the CLI environment and object model. The C++/CLI designers explored many alternatives to try to 
force at least some C++ semantics on CLI types authored in C++/CLI (e.g., to force virtual function 
calls during construction to behave according to C++ rules), and this approach has important problems 
including: 

• It would create confusion, not reduce it. For example, instead of just C++ types and CLI types, 
programs would have to know that there would now be C++ types, CLI types that behave like CLI 
types (e.g., in all existing CLI libraries), and CLI types that partly behave like C++ types (and which 
would not work well or at all when used by other CLI languages). I do not consider such extra 
complexity to be an improvement. 

• It is not always technically possible. For example, for CLI value types it is not possible to support 
user-defined copy construction with correct semantics, because the CLI runtime creates bitwise 
copies at times where the compiler cannot insert a function call to invoke the copy constructor. (On 
the other hand, supporting copy constructors on CLI reference types works fine, as noted above.) 

So C++/CLI avoids confusion by surfacing both C++ and CLI semantics correctly — correct C++ rules for 
C++ types, and correct CLI rules where they are inherent for CLI types. That’s not a bug, it’s an essential 
feature. And C++CLI surfaces the CLI semantics with the minimum possible intrusiveness: For example, 
to denote CLI type semantics, the programmer authoring a new CLI type writes one word (e.g., ref or 
value, once on the declaration of the class only) to tag that “this set of rules applies,” after which the code 
that uses the type just instantiates and uses objects as usual without any further syntax extensions. One 
word per type for the above-cited rules is about as low-impact as it’s possible to get. 

At the time this project was launched in 2003, participants described it as an attempt to develop a 
“binding” of C++ to CLI, and a minimal (if still substantial) set of extensions to support that envi-
ronment. But C++/CLI has effectively evolved into a different language. Hasn’t it? 

First, this question incorrectly implies that what was presented in 2003 is not what was delivered. Anyone 
can compare for themselves — see: 

 



50 2006.02.24  A Design Rationale for C++/CLI 

• [N1557], the 2003 overview presentation to the ISO C++ committee, available on the ISO C++ com-
mittee website. That presentation covered the same ground as this paper, and this paper frequently 
reproduces its slides for reference and comparison. 

• [C++/CLI], the current Ecma standard. 

In particular, the [N1557] presentation included: 

• Slides 5-6: The same goals covered in this paper. (See §1.) 

• Slides 7-10: The same technical constraints covered in this paper, including the need for language 
extensions because CLI types behave differently (specifically mentioning the issues of deep virtual 
calls in constructors, and the dual nature of value types), as well as the use of contextual keywords. 
(See §1.2 and §3.1.) 

• Slide 14: The point of why defaults should be different on CLI class types. (See §3.1.5.) 

• Slide 17: The contemplated future unification of allowing overloaded and templated property setter 
functions. (See §3.2.3.) 

• Slide 30: The ability to write agnostic templates that can work seamlessly on both C++ and CLI 
types and features. (See §3.3.3.) 

• Slides 30-38: Why C++ destructors are a huge strength and why they make CLI types easier to use, 
even ones authored in other languages. (See §3.1.3.)18 

• Slides 41-43: Why generics are distinct from templates, but how they can be integrated (e.g., gener-
ics can match template template parameters, and a mention of the STL/CLI project). (See §3.4.) 

• Slides 51-53: The contemplated future unification supporting cross-inheritance between C++ and 
CLI types (aka “mixed types”). (See §3.1.3.) 

• Slides 55-57: Pure extensions to ISO C++, including even macro compatibility, via contextual key-
words with a note that these are a burden on compiler writers to implement but were chosen be-
cause the designers viewed ISO C++ compatibility as more important. (See §1.1 and §1.2.) 

• Slides 59-64: Motivations and the contemplated timeline and track for C++/CLI standards work 
(Ecma, then ISO fast-track submission). The presentation and further discussion that week in 2003 
included explicit requests for direction on whether WG21 felt this was the right plan. Individuals 
raised various concerns, but WG21 did not decide to direct TG5 to pursue a different course and 
TG5 and WG21 planned close technical liaison to ensure ISO C++ compatibility (which both fol-
lowed through on). 

The main differences I can see between what was presented and the way C++/CLI ended up are: 

• It took an extra year to do the technical work than the original timeline estimated. 

• C++/CLI did manage to avoid making generic a reserved word after all, further improving ISO 
C++ compatibility. 

• C++/CLI ended up not supporting copy constructors and copy assignment operators on value 
types. It turned out that the assumption that CLI value type instances are bitwise copyable is inher-
ent in CLI, and CLI has a few places where the runtime has latitude to make bitwise copies of value 
type instances but where the C++/CLI compiler cannot inject code to make a function call and so 
guarantee that the copy constructor or copy assignment operator will be called. Since the compiler 

                                                           
18 See also my many blog entries about this, as well as my 2004 OOPSLA talk on this topic which is currently available as 
streamed video via a link on my home page www.gotw.ca. Disclaimer: I have no control over the technologies used to create 
the streamed version of this video, and it doesn’t work on all browsers and players; I’m just linking to it so you can view it if 
you have compatible software. 

 



A Design Rationale for C++/CLI 2006.02.24 51 

can’t guarantee that these functions will be called, it would be wrong to let programmers write 
them and have them only mostly work. 

• C++/CLI ended up not including the unification of permitting CLI types to be allocated on the C++ 
heap via new, and C++ types to be allocated on the CLI heap via gcnew (including the related fea-
ture of allowing finalizers on C++ types), though it deliberately left room for that unification as an 
intended future extension. 

As for whether this set of extensions amounts to a different superset language, a compatible dialect, 
and/or a binding: I think you can find reasonable people who view it any of those ways. Whichever 
noun you prefer, it is the most compatible set of extensions I know of to any programming language, 
standard or otherwise, including for nearly all macro cases — which are notoriously next to impossible 
to support in a compatible way. Achieving that meant putting requirements in C++/CLI that placed a 
greater burden on compiler writers in favor of preserving strong ISO C++ compatibility and avoiding 
conflict with C++0x evolution, and improving programmer usability so that programmers would use 
the feature instead of switch to another language (unlike with the Managed Extensions). These choices 
reflect the designers’ great respect for ISO C++. 

 



52 2006.02.24  A Design Rationale for C++/CLI 

5 Glossary 
assembly — A CLI library or executable, containing the metadata describing the library’s contents. 

boxing — An explicit or implicit conversion from any value class type V to type V^, in which a V box is 
allocated on the CLI heap, and the value is copied into that box. (See also “unboxing”.) 

C++0x — The next revision of ISO C++ currently under development in ISO WG21 (ISO C++ standards 
committee). (See also [C++], the current standard.) 

C++/CLI — A set of extensions that harmonize ISO C++ and ISO CLI programming, so that C++ pro-
grammers are able to use CLI libraries and create new ones. Supersedes the Managed Extensions. (See 
also “Managed Extensions.”) 

CLI — Common Language Infrastructure (see [CLI]). The Ecma and ISO standardized subset of the .NET 
runtime and base class library. There are at least two commercial implementations of CLI (Microsoft .NET 
and Novell Mono) as well many research and other implementations. 

CLI library — See Assembly. 

CLS — The CLI Common Language Specification defined in [CLI §7], which defines minimum require-
ments for CLI-compatible languages including requirements to be a CLS extender and a CLS consumer. 
“The CLS is designed to be large enough that it is properly expressive yet small enough that all languages 
can reasonably accommodate it.” [CLI §7.2] 

CLS framework — “A library consisting of CLS-compliant code.” [CLI §7.2.1] 

CLS consumer — “A CLS consumer is a language or tool that is designed to allow access to all of the 
features supplied by CLS-compliant frameworks, but not necessarily be able to produce them. The fol-
lowing is a partial list of things CLS consumer tools are expected to be able to do: […] Create an instance 
of any CLS-compliant type” and otherwise support consuming libraries that use major CLI features. [CLI 
§7.2.2] 

CLS extender — “A CLS extender is a language or tool that is designed to allow programmers to both use 
and extend CLS-compliant frameworks. CLS extenders support a superset of the behavior supported by a 
CLS consumer (i.e., everything that applies to a CLS consumer also applies to CLS extenders). In addition to 
the requirements of a consumer, extenders are expected to be able to: Define new CLS-compliant types that 
extend any (non-sealed) CLS-compliant base class …” and support authoring other CLI features. [CLI §7.2.3] 

CLI reference type — A normal CLI type that can be physically allocated only on the CLI heap. Denoted 
using ref class in C++/CLI.  

CLI value type — An efficient CLI type that models a value and therefore is safe for bitwise copying. 
Every value type actually has two forms, which are semantically different and so can be considered dis-
tinct, though implicitly related, types: 1. The usual unboxed form, which is always instantiated directly 
on the stack or as a directly embedded member of another object, and does not have a vtable. 2. The 
boxed form, which is a standalone heap object with a vtable (this indirection is denoted in C++/CLI using 
a handle to a value type).  (See “boxing.”) Denoted using value class in C++/CLI. 

handle — A C++/CLI handle is called an “object reference” in the CLI specification. For a CLI class T, a 
T^ is a handle to an object of type T on the CLI heap. A handle tracks, is rebindable, and can point to a 
whole object only. (See also “tracking.”) 

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the 
virtual machine as specified in the CLI. 

 



A Design Rationale for C++/CLI 2006.02.24 53 

heap, C++ — The storage area (accessed by new) as defined in the C++ Standard [C++ §18.4]. 

ILASM — CLI instruction language assembler. 

Managed Extensions — A precursor to C++/CLI, the first attempt to define a set of extensions to C++ to 
enable CLI programming. The Managed Extensions specified fewer extensions to C++ than does 
C++/CLI, and failed to gain acceptance among programmers in large part for that reason; its frugality 
often obscured essential differences and was confusing to use. This set of extensions is also commonly 
called “Managed C++.” It shipped in Visual C++ 2002 and 2003, and is supported but deprecated in Vis-
ual C++ 2005. 

metadata — Data that describes and references the types defined by the CLI Common Type System 
(CTS). Metadata is stored in a way that is independent of any particular programming language. Thus, 
metadata provides a common interchange mechanism for use between tools that manipulate programs 
(such as compilers and debuggers) as well as between these tools and the CLI virtual machine. 

pinning — Preventing an object on the CLI heap from moving during garbage collection, so that for the 
duration of the pin it is safe to use a normal C++ pointer to the object. Holding a pin interferes with CLI 
heap garbage collection, and so pins are intended to be used sparingly and to have short lifetimes. 

reference type — See CLI reference type. 

value type — See CLI value type. 

tracking — The act of keeping track of the location of an object that resides on the CLI heap. This is nec-
essary because such objects can move during their lifetime (unlike objects on the C++ heap, which never 
move). Tracking is maintained by the virtual machine during garbage collection. Tracking is an inherent 
property of C++/CLI handles. 

unboxing — An explicit conversion from CLI type System::Object^ to any CLI value class type, from CLI 
type System::ValueType^ to any CLI value class type, from V^ (the boxed form of a CLI value class type) 
to V (the normal unboxed form of the CLI value class type), or from any CLI interface class type handle to 
any CLI value class type that implements that CLI interface class. 

virtual machine — Called the Virtual Execution System (VES) in the CLI standard. This system imple-
ments and enforces the Common Type System (CTS) model. The VES is responsible for loading and run-
ning programs written for the CLI. It provides the services needed to execute CLI code and data, using 
the metadata to connect separately generated modules together at runtime. For example, given an ad-
dress inside the code for a function, it must be able to locate the metadata describing that function. It 
must also be able to walk the stack, handle exceptions, and store and retrieve security information. 

6 References 
[C++] ISO/IEC International Standard 14882:2003, Programming Languages — C++ (2nd ed., April 2003). 

[C++PL3e] B. Stroustrup. The C++ Programming Language, 3rd edition (Addison-Wesley, 1997). 

[C++/CLI] Standard Ecma-372, C++/CLI Language Specification (1st ed., December 2005). 

[CLI] Standard Ecma-335, Common Language Infrastructure (3rd ed., June 2005). 

[CLI03] ISO/IEC International Standard 23271:2003, Common Language Infrastructure (CLI) (1st ed., 
April 2003). [CLI] is an updated edition that has been approved by Ecma and is now under 
ISO consideration. 

[D&E] B. Stroustrup. The Design and Evolution of C++ (Addison-Wesley, 1994). 

[N1557] H. Sutter. “C++/CLI Overview” (presentation to ISO C++ standards committee, October 2003). 

 



54 2006.02.24  A Design Rationale for C++/CLI 

Appendix: A Typical Public User Comment 
C++ was designed primarily so that the author and his friends would not have to program in  
assembler, C, or various modern high-level languages. Its main purpose is to make writing good 
programs easier and more pleasant for the individual programmer. 

      — B. Stroustrup (D&E, p. 106) 

The following unsolicited comment is representative of people who are actually using a C++/CLI com-
piler (currently Visual C++ 2005), and is typical of how C++/CLI is often used in practice in the field. 19

Color emphasis is added. Ellipses are original. 

 

In comp.lang.c++.moderated on 29 January 2006, Andrew Browne wrote: 

I have made some (so far) limited use of C++/CLI in developing a web front end to some core application 
code written in standard C++. This has been my first experience of writing web front end software and I 
have greatly appreciated the fact that I can write this essentially in the language I know and love (rather 
than, say, JavaScript) and that calls to my standard C++ core application code (which I haven’t needed to 
change) are natural and seamless. Furthermore in this development I have been able to make seamless 
use of third party components which happen to have been written in different programming languages 
(C# and VB.NET.) I have also found that I have needed to make only very limited use of the new key-
words and syntax specific to C++/CLI to do all this. Of course I would prefer to be able to do it all en-
tirely in standard C++ without any new keywords or syntax and if there is a current technology which 
would let me do all this in standard C++ alone then I would be very interested to know about it… 

For me, CLI (or .NET) seems to offer the possibility of developing web applications and web services in a 
way which is not too alien to the sort of programming I am used to, and in which I can continue to use 
my favourite programming language pretty much the whole time. I will continue to develop my core 
application code in standard, portable C++, and I see no good reason to do otherwise, but C++/CLI 
seems to me, so far, to be quite a promising tool for making use of that application code in a web envi-
ronment, especially if C++/CLI compilers become available for Mono or other non-Microsoft CLI imple-
mentations as I hope they will. 

I also hope that, in future, C++/CLI development will move yet closer to standard C++ rather than fur-
ther away… 

Andrew 

                                                           
19 See also my blog article “How much C++/CLI syntax do you need to use all of the .NET Frameworks?” (December 15, 2003). 

 


