
Date: February 22, 1999
Project: ISO C++
Doc. No.: J16/99-0008 = WG21 N1185
Reply To: Herb Sutter

(hsutter@peerdirect.com)

vector<bool> Is Nonconforming, and Forces Optimization Choice

Discussion

Consider the following code:

// Example 1: Works for every T except bool
//

template<class T>
void g(vector<T>& v) {
 T& r = v.front();
 T* p = &*v.begin();
 // ... do something with r and *p ...
}

The reason for the anomaly is that the vector<bool> specialization (23.2.5, lib.vector.bool) does not
meet the standard’s container or sequence requirements. Nevertheless, the specialization appears in
Clause 23, with no warning that it is in fact neither a container nor a sequence.

The vector<bool> specialization was put into the standard to provide an example of how to write a
proxied container. It’s clear that proxied collections can be useful; the usual example is a disk-based
collection. So the idea was to show how to make such a proxied collection meet the library’s container
requirements.

Unfortunately, the container and iterator requirements do not allow proxied containers: a
container<T>::reference must be a true lvalue of type T. Iterators have similar requirements:
dereferencing a forward, bidirectional, or random-access iterator must yield a T&. Proxy-based
collections are a good and useful technique; such collections just can’t be “containers” in the sense
required by the standard, that’s all. Further, although it is strongly implied that
vector<bool>::iterator is a random-access iterator, it is not; this means that it is possible to write a
conforming implementation of standard library algorithms that will nevertheless not work with
vector<bool> .

Note that the original STL’s container requirements and the C++ standard’s container requirements are
based on the implicit assumption (among others) that dereferencing an iterator both is a constant-time
operation and requires negligible time compared to other operations. As James Kanze correctly pointed
out on the comp.std.c++ newsgroup in early 1997, neither assumption holds for a disk-based container or

J16/98-0008 = WG21 N1185 2

a packed-representation container. [For all the gory details, do a DejaNews search for Subject=“vector
and bool” and Forum=“*c++*”. The discussions took place in Jan/Feb 1997. Note also the more recent
discussions from users asking how to turn off the vector<bool> specialization.] Consider that one
would be unlikely to apply a standard algorithm like std::find() to a disk-based container; the
performance would be abysmal compared to a special-purpose replacement, largely because the
fundamental performance assumptions for in-memory containers do not apply to disk-based containers.
(For similar reasons, even in-memory containers like std::map provide their own find as a member
function.) For a packed-representation container like vector<bool> , access through the proxy object
requires bitwise operations, which are generally much slower than manipulation of a native type like an
int . Further, whenever the proxy object construction and destruction can’t be completely optimized
away by the compiler, managing the proxies themselves adds further overhead.

Finally, vector<bool> was intended as an optimization. Unfortunately, is not a pure optimization, but a
tradeoff that favors “less space” at the expense of “potentially slower speed.” Normally, we teach users
to optimize only after empirical evidence (e.g., a profiler’s output) demonstrates the need in their
particular application; otherwise, the optimization is probably premature. The most premature
optimization of all is an optimization that’s enshrined in the standard. In this case, vector<bool> forces
the “favour less space at the expense of potentially slower speed” optimization choice on all programs.
The implicit assumption is that virtually all users of a vector of bool s will prefer “less space” at the
expense of “potentially slower speed,” that they will be more space-constrained than performance-
constrained. This is clearly untrue.

Summary of Problems and Issues

In summary, the problems/issues are:

1. vector<bool> does not meet the container or sequence requirements.

2. vector<bool>::iterator does not meet the requirements of a forward, bidirectional, or random-
access iterator, although the last is strongly implied by the specialization’s naming and position. This
means that it may not work with a conforming implementation of a standard library algorithm.

3. It is misleading that vector<bool> appears in Clause 23 without a note to indicate that it’s really
neither a container nor a sequence.

4. vector<bool> attempts to illustrate how to write standard-conforming proxied containers.
Unfortunately, that appears not to be a sound idea, for two reasons:

• Although a proxied collection can be an important and useful tool, by definition it must violate
the standard’s current container requirements and therefore can never be a conforming container.
(See #1.)

• The main reason to conform to the standard container requirements is to be used with the
standard algorithms, yet the standard algorithms are typically inappropriate for proxied
containers because proxied containers have different performance characteristics than plain-and-
in-memory containers.

5. vector<bool> ’s name is misleading because the things inside aren’t bool s.

J16/98-0008 = WG21 N1185 3

6. vector<bool> forces a specific optimization choice on all users by enshrining it in the standard.
That’s probably not a good idea, even if the actual performance overhead turns out to be negligible
for a given compiler for most applications; different users have different requirements.

Proposed Resolution

1. Deprecate 23.2.5 [lib.vector.bool]. (The more desirable solution is to remove 23.2.5 entirely, but this
is probably not possible until the next revision of the standard.)

2. Add a warning to 23.2.5 that vector<bool> does not meet the container or sequence requirements,
and that vector<bool>::iterator does not meet the requirements of a forward, bidirectional, or
random-access iterator.

end of text

