
 Doc No: SC22/WG21/N1373
 J16/02-0031

 Date: October 8, 2002

 Project: JTC1.22.32

 Reply to: Herb Sutter
 Microsoft Corp.
 1 Microsoft Way
 Redmond WA USA 98052-6399
 Fax: +1-928-438-4456
 Email: hsutter@gotw.ca

Proposed Addition to C++: Typedef Templates
With comments and examples from Dave Abrahams, Peter Dimov, John Spicer, and Daveed

Vandevoorde.

1. The Problem, and Current Workarounds
We would like to allow the programmer to create a synonym for a template where some, but not all,
actual template arguments are fixed.

The problem is important because such a facility would make it possible to create more easily usable
template libraries. For example, consider a template like this:
 template<typename T1,
 typename T2,
 typename T3 = int
 typename T4 = string>
 class C { /*...*/ };

Today, default template arguments already enable programmers to use the template more naturally
(and less tediously) as just:
 C<bool, short> x; // synonym for C<bool, short, int, string>

Alternatively, we can also use typedefs to create a synonym for another type, including a synonym
for a template specialization with all actual template arguments specified:
 typedef C<bool, short, long, wstring> Phil;
 Phil p;

It is not, however, possible in general to use default arguments or typedefs to create a more usable
name for a template where some, but not all, actual template arguments are fixed. The ability to create
a synonym which specifies only some template arguments while allowing others to still vary would be
useful and help to create more naturally usable names in libraries.

In existing practice, including in the standard library, type names nested inside helper templates are
used to work around this problem in some cases. The following is one example of this workaround;
one drawback is the need to write “::Type”, and another is that this workaround does not work for all
cases.

WG21/N1373 = J16/02-0031 page 2
Proposed Addition to C++: Typedef Templates

 template< typename T >
 struct SharedPtr
 {
 typedef Loki::SmartPtr
 <
 T, // note, T still varies
 RefCounted, // but everything else is fixed
 NoChecking,
 false,
 PointsToOneObject,
 SingleThreaded,
 SimplePointer<T> // note, T can be used as here
 >
 Type;
 };

 SharedPtr<int>::Type p; // sample usage, “::Type” is ugly

What we’d really like to be able to do is simply this:
 template< typename T >
 typedef Loki::SmartPtr
 <
 T, // note, T still varies
 RefCounted, // but everything else is fixed
 NoChecking,
 false,
 PointsToOneObject,
 SingleThreaded,
 SimplePointer<T> // note, T can be used as here
 >
 SharedPtr;

 SharedPtr<int> p; // sample usage, “::Type” is ugly

For another example, the standard library’s rebind helpers fall into this category:
 template<typename T> class allocator { //...
 template<typename U>
 struct rebind { typedef allocator<U> other; };
 };

 allocator<T>::rebind<U>::other x; // sample usage

What we’d really like to be able to do is simply this:
 template<typename T> class allocator { //...
 template<typename U>
 typedef allocator<U> rebind;
 };

WG21/N1373 = J16/02-0031 page 3
Proposed Addition to C++: Typedef Templates

 allocator<T>::rebind<U> x; // sample usage

In fact, the standard itself says: “The template class member rebind […] is effectively a template
typedef: if the name Allocator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the
same type as SomeAllocator<U>.” [emphasis mine]

These workarounds are ugly, and do not work for all cases (e.g., the workaround can’t match a
template template parameter).

This proposal fits into the categories of:

• improve support for library building

• improve support for generic programming

• remove embarrassments (inasmuch as the absence of typedef templates is a known weakness in
the language)

2. The Proposal
2.1 Basic Cases
A typedef introduces a synonym, rather than a complete new type. Similarly, a typedef template
introduces a parameterized synonym, not a complete new type. One purpose for allowing
templatization of a typedef is to introduce a simplified synonym for an existing template where some
but not all template arguments are fixed. For example:
 template<typename A, typename B> class X { /* ... */ };

 template<typename T> typedef X<T,int> Xi;

 Xi<double> Ddi; // equivalent to X<double,int>

A typedef template can be modeled like a partial specialization, with the definition being the primary
class template. The syntax naturally follows the existing syntax for function and class templates:
 void f(int); // function
 template<typename T> void f(T);
 // function template, usage f<int>

 class X { }; // class
 template<typename T> class X { };
 // class template, usage X<int>

 typedef map<string, Employee> EmployeeRegistry; // typedef
 template<typename T> typedef map<string, T> Registry;
 // typedef template, usage Registry<Employee>

It uses the same rules as function and class templates for dependent names (including the use of
typename within the typedef template for dependent type names), non-type parameters, and template
template parameters.

Here’s an example that comes up in many class templates, particularly in policy-based design (heavily
used in Loki) where there are many template parameters and we currently can’t express a typedef name
that fixes some but not all of the types. In this example, I cite Loki’s SmartPtr, which is very flexible

WG21/N1373 = J16/02-0031 page 4
Proposed Addition to C++: Typedef Templates

because it allows customization via several policy template parameters. Unfortunately, having so many
template parameters also makes it harder to use. There are several common uses of Loki’s SmartPtr
with particular template parameters fixed that it would be useful to be able to invoke more simply via a
synonym. For example:
 template< typename T >
 typedef Loki::SmartPtr
 <
 T, // note, T still varies
 RefCounted, // but everything else is fixed
 NoChecking,
 false,
 PointsToOneObject,
 SingleThreaded,
 SimplePointer<T> // note, T can be used as here
 >
 SharedPtr;

 template< typename T >
 typedef Loki::SmartPtr
 <
 T,
 RefCounted,
 NoChecking,
 false,
 PointsToArray,
 SingleThreaded,
 SimplePointer<T>
 >
 SharedArray;

 template< typename T >
 typedef Loki::SmartPtr
 <
 T,
 NonCopyable,
 NoChecking,
 false,
 PointsToOneObject,
 SingleThreaded,
 SimplePointer<T>
 >
 ScopedPtr;

 template< typename T >
 typedef Loki::SmartPtr
 <
 T,
 NonCopyable,
 NoChecking,

WG21/N1373 = J16/02-0031 page 5
Proposed Addition to C++: Typedef Templates

 false,
 PointsToArray,
 SingleThreaded,
 SimplePointer<T>
 >
 ScopedArray;

2.2 Specialization
Consider the following typedef template:
 template<typename A, typename B> class X { /* ... */ };

 template<typename T> typedef X<T,int> Xi;

To specialize the typedef template, use the same syntax as when specializing class and function
templates:
 // specialization for string
 template<> typedef UnrelatedType Xi<string>;

 ...

 Xi<double> Ddi; // uses base template

 Xi<string> Ssi; // uses specialization

To partially specialize the typedef template, use the same syntax as when partially specializing class
and function templates — the only trick is to remember where the template argument list goes, namely
right after the name being specialized. For class templates, the standard says: “For partial
specializations, the template argument list is explicitly written immediately following the class
template name.” So, for partial specializations of typedef templates, the template argument list is
explicitly written immediately following the typedef template name:
 // partial specialization for pointers
 template<typename T> typedef AnotherUnrelatedType<T> Xi<T*>;

 ...

 Xi<double> Ddi; // uses base template

 Xi<int*> Ipi; // uses partial specialization

Here are additional motivating cases for allowing specialization, provided by Peter Dimov:
 template<int> typedef int int_exact;
 template<> typedef char int_exact<8>;
 template<> typedef short int_exact<16>;
 // ...

 template<class T> typedef T remove_const;
 template<class T> typedef T remove_const<T const>;

It has been observed that we have to choose between allowing specialization and allowing deduction.
John Spicer notes that the current workaround for template typedefs does not allow deduction either, so
the most straightforward solution would be to disallow deduction and allow specialization.

WG21/N1373 = J16/02-0031 page 6
Proposed Addition to C++: Typedef Templates

2.3 Same Declarations
A declaration having a parameter whose type is expressed in terms of a typedef template is identical to
the same declaration with the parameter expressed in terms of the type for which the typedef template
is a synonym. A motivating example follows, provided by Peter Dimov:
 template<class T, class P> class smart_ptr;
 template<class T> typedef smart_ptr<T, SharedPolicy> shared_ptr;

 template<class T> void f(smart_ptr<T, SharedPolicy>);
 template<class T> void f(shared_ptr<T>);

2.4 Matching template template parameters
A typedef template can be used as an argument to a template template parameter, as in the following
example:
 template<template<class> class X> class Y {};

 template<class, class> class Z {};

 template<class T> typedef Z<T, T> A;

 Y<A> a; // uses adapted Z

3. Interactions and Implementability
3.1 Interactions

The proposed feature is intended to be a natural application of existing template syntax to the existing
typedef keyword. Interactions with the rest of the language are limited because typedef templates do
not create a new type or extend the type system in any way; they only create synonyms for other types.

This is not a one-off or special-purpose feature. Consider the example in §2.2, and the ease of use of
letting the programmer write:
 SharedPtr<int> p;

 SharedArray<int> a;

instead of:
 SharedPtr<int>::Type p;

 SharedArray<int>::Type a;

or, worse still:

WG21/N1373 = J16/02-0031 page 7
Proposed Addition to C++: Typedef Templates

 SmartPtr<int, RefCounted, NoChecking, false,
 PointsToOneObject, SingleThreaded,
 SimplePointer<int> > p;

 SmartPtr<int, RefCounted, NoChecking, false,
 PointsToArray, SingleThreaded,
 SimplePointer<int> > a;

The naturalness and ease of use of the first case is possible only with typedef templates, and will make
advanced C++ libraries more accessible to programmers.

A typedef template can be used as a template template argument if it otherwise matches the rules for
such an argument. When so used, however, it is just a “syntactic sugar” synonym. Because typedef
templates can be specialized, at the point of instantiation the typedef template specialization (if any) is
found and used, and if it refers to another template then that template’s specialization (if any) is also
found and used.

It is recommended that a typedef template parameter be deducible as in this example:
 template<typename T>
 typedef T MyT;

 template<typename T>
 void f(MyT<T>);

 void g() {
 MyT<int> val = 42;
 f(val); // succeeds, T is deduced to be int
 f(42); // fails, T can't be deduced
 }

3.2 Implementability
A sample implementation that allows the basic usages, but not specialization or deduction, was created
as an unshipped extension within the Microsoft compiler with little difficulty. The work to add
specialization and deduction is not expected to be difficult, but of course that won’t be known for sure
until it’s done.

