
Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 1

Herb SutterHerb Sutter
Software ArchitectSoftware Architect
Microsoft Developer DivisionMicrosoft Developer Division

Software and the Software and the
Concurrency RevolutionConcurrency Revolution

1

TruthsTruths

ConsequencesConsequences

FuturesFutures

ConcurrencyConcurrency

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 2

2

von
Neumann

3

•• Historically:Historically: Boost singleBoost single--
stream performance via stream performance via
more complex chips, first more complex chips, first
via one big feature, then via one big feature, then
via lots of smaller features.via lots of smaller features.

•• Now:Now: Deliver more cores Deliver more cores
per chip.per chip.

•• The free lunch is over for The free lunch is over for
todaytoday’’s sequential apps s sequential apps
andand many concurrent appsmany concurrent apps
(expect some regressions). (expect some regressions).
We need killer apps with We need killer apps with
lots of latent parallelism.lots of latent parallelism.

•• A generational advance A generational advance
>OO is necessary>OO is necessary to get to get
above the above the ““threads+locksthreads+locks””
programming model.programming model.

Each year we get Each year we get fasterfaster more processorsmore processors

Montecito

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Moore’s
Law

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 3

4

LightLight
AinAin’’t getting any fastert getting any faster

5

The Issue Is (Mostly) On the ClientThe Issue Is (Mostly) On the Client
WhatWhat’’s s ““already solvedalready solved”” and whatand what’’s nots not

““SolvedSolved””: Server apps (e.g., database servers, web services): Server apps (e.g., database servers, web services)
lots of independent requests lots of independent requests –– one thread per request is easyone thread per request is easy

typical to execute many copies of the same codetypical to execute many copies of the same code
shared data usually via structured databasesshared data usually via structured databases

(automatic implicit concurrency control via transactions)(automatic implicit concurrency control via transactions)
⇒⇒ with some care, with some care, ““concurrency problem is already solvedconcurrency problem is already solved”” herehere

Not solved: Typical client appsNot solved: Typical client apps
somehow employ many threads per user somehow employ many threads per user ““requestrequest””

highly atypical to execute many copies of the same codehighly atypical to execute many copies of the same code
shared data in memory, unstructured and promiscuousshared data in memory, unstructured and promiscuous

(error prone explicit locking (error prone explicit locking –– where are the transactions?)where are the transactions?)
also: legacy requirements to run on a given thread (e.g., GUI)also: legacy requirements to run on a given thread (e.g., GUI)

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 4

6

Dealing With AmbiguityDealing With Ambiguity

Possible anytime there are
multiple unordered locks

ImpossibleDeadlock

Code coverage insufficient, races
cause hard bugs, and stress testing
gives only probabilistic comfort

Code coverage finds
most bugs, stress
testing proves quality

Testing

Postulate a race and inspect code;
root causes easily remain
unidentified (hard to reproduce,
hard to go back in time)

Trace execution leading
to failure; finding a fix
is generally assured

Debugging

Invariants
Locks

Memory
Behavior NondeterministicDeterministic

Must hold anytime the
protecting lock is not held

Must hold only on
method entry/exit, or
calls to external code

EssentialUnnecessary

In flux (unless private, read-only,
or protected by lock)

Stable

Concurrent ProgramsSequential Programs

7

TruthsTruths

ConsequencesConsequences

FuturesFutures

ConcurrencyConcurrency

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 5

8

A Software RevolutionA Software Revolution
Motivating an Motivating an ““OO for concurrencyOO for concurrency””

Concurrency is likely to be more disruptive than OOConcurrency is likely to be more disruptive than OO

Languages canLanguages can’’t ignore itt ignore it
languages could ignore OO and remain relevant (e.g., C) languages could ignore OO and remain relevant (e.g., C)

todaytoday’’s languages will be forced to add direct support for s languages will be forced to add direct support for
concurrency, or be marginalized to nonconcurrency, or be marginalized to non--demanding appsdemanding apps

ItIt’’s demonstrably harders demonstrably harder
e.g., analysis that is routine for sequential programse.g., analysis that is routine for sequential programs

is provably undecidable for concurrent programsis provably undecidable for concurrent programs

We need higherWe need higher--level abstractions for mainstream languageslevel abstractions for mainstream languages
““threads + locksthreads + locks”” ≡≡ structured programmingstructured programming

necessary new abstractions necessary new abstractions ≡≡ objectsobjects

9

TodayToday’’s Status Quo Isns Status Quo Isn’’t Enought Enough
The good, the bad, and the uglyThe good, the bad, and the ugly

Problem 1: Free threadingProblem 1: Free threading
e.g., arbitrary affinity, blocking, reentrancye.g., arbitrary affinity, blocking, reentrancy

willywilly--nilly concurrency yields nilly concurrency yields higgedlyhiggedly--piggedlypiggedly failuresfailures
explicit threading is too lowexplicit threading is too low--levellevel

Problem 2: Mutable shared memory + locksProblem 2: Mutable shared memory + locks
lockslocks are the best we have, are the best we have, but arenbut aren’’t composablet composable

(Newtonian: locks are hard for expert programmers to get right)(Newtonian: locks are hard for expert programmers to get right)
““locklock--freefree”” isnisn’’t an answer; thatt an answer; that’’s hard for geniuses to get rights hard for geniuses to get right

(Quantum: (Quantum: ““the truth? you canthe truth? you can’’t handle the trutht handle the truth…”…”))

All current mainstream languagesAll current mainstream languages’’ concurrency supportconcurrency support
based on threads + locksbased on threads + locks

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 6

10

O(1), O(K), or O(N) Concurrency?O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

• The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.

• Potentially poor responsiveness.

1. Sequential apps.
• The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
• Potentially poor responsiveness.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

11

O(1), O(K), or O(N) Concurrency?O(1), O(K), or O(N) Concurrency?
1. Sequential apps.

• The free lunch is over (if CPU-bound): Flat or
merely incremental perf. improvements.

• Potentially poor responsiveness.

1. Sequential apps.
• The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
• Potentially poor responsiveness.

The bulk
of today’s

client apps

The bulk
of today’s

client apps

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Essentially none of
today’s client apps

(outside limited niche uses, e.g.:
OpenMP, background workers,

pure functional languages)

Virtually all the
rest of today’s

client apps

Virtually all the
rest of today’s

client apps

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

2. Explicitly threaded apps.
• Hardwired # of threads that prefer

K CPUs (for a given input workload).
• Can penalize <K CPUs,

doesn’t scale >K CPUs.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

3. Scalable concurrent apps.
• Workload decomposed into a

“sea” of heterogeneous work
items (with ordering edges).

• Lots of latent concurrency
we can map down to N cores.

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 7

12

OO

C

asm

threads+locks

semaphores

An OO for ConcurrencyAn OO for Concurrency

13

The Concurrency ElephantThe Concurrency Elephant

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 8

14

ConfusionConfusion
You can see it in the vocabulary:You can see it in the vocabulary:

Acquire And-parallelism Associative
Atomic Cancel/Dismiss Consistent
Data-driven Dialogue Fairness
Fine-grain Fork-join Hierarchical
Interactive Invariant Message
Nested Overhead Performance
Priority Protocol Release
Responsiveness Schedule Serializable
Structured Systolic Throughput
Timeout Transaction Update
Virtual

15

Interacting
Infrastructure

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
Timeout Timeout

Asynchronous
Agents

Concurrent
Collections

Real
Resources

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 9

16

Toward an Toward an ““OO for ConcurrencyOO for Concurrency””
What we need for a great leap forwardWhat we need for a great leap forward

What: Enable apps with lots of latent concurrency at every levelWhat: Enable apps with lots of latent concurrency at every level
cover both coarsecover both coarse-- and fineand fine--grained concurrency,grained concurrency,

from web services to infrom web services to in--process tasks to loop/data parallelprocess tasks to loop/data parallel
map to hardware at run time (map to hardware at run time (““rightsize merightsize me””))

How: Abstractions (no explicit threading, no casual data sharingHow: Abstractions (no explicit threading, no casual data sharing))
active objects asynchronous messages futuresactive objects asynchronous messages futures

rendezvous + collaboration parallel loopsrendezvous + collaboration parallel loops

How, part 2: ToolsHow, part 2: Tools
testing (proving quality, static analysis, testing (proving quality, static analysis, ……))

debugging (going back in time, causality, message reorder, debugging (going back in time, causality, message reorder, ……))
profiling (finding convoys, blocking paths, profiling (finding convoys, blocking paths, ……))

17

A higher-level abstraction:
Singleton* instance;
Singleton* GetInstance() {

once {
instance = new Singleton;

}
return instance;

}

Allow this variant:
Singleton* GetInstance() {

static Singleton instance;
return &instance;

}

• A variable should be initialized
once. The compiler could
guarantee “once” semantics for
initializing shared variables.

A higher-level abstraction:
Singleton* instance;
Singleton* GetInstance() {

once {
instance = new Singleton;

}
return instance;

}

Allow this variant:
Singleton* GetInstance() {

static Singleton instance;
return &instance;

}

• A variable should be initialized
once. The compiler could
guarantee “once” semantics for
initializing shared variables.

Example: DCL.
Singleton* volatile instance;
Singleton* GetInstance() {

if(!instance) {
// acquire lock
if(!instance) {

instance = new Singleton;
}
// release lock

}
return instance;

}

• OK… on some platforms (e.g.,
Java 5, VS 2005). RTM carefully.

• Error-prone. Omit volatile or
forget second check, program
compiles & “works.”

• This is just too low-level.

Example: DCL.
Singleton* volatile instance;
Singleton* GetInstance() {

if(!instance) {
// acquire lock
if(!instance) {

instance = new Singleton;
}
// release lock

}
return instance;

}

• OK… on some platforms (e.g.,
Java 5, VS 2005). RTM carefully.

• Error-prone. Omit volatile or
forget second check, program
compiles & “works.”

• This is just too low-level.

Illustrating a Principle: Codifying IdiomsIllustrating a Principle: Codifying Idioms

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 10

18

TruthsTruths

ConsequencesConsequences

FuturesFutures

ConcurrencyConcurrency

19

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency-related features in recent products:
• OpenMP for loop/data parallel operations (Intel, Microsoft).
• Memory models for concurrency (Java, .NET, VC++, C++0x…).

Various projects and experiments:
• Memory model for C++0x – and maybe some library

abstractions?
• The Concur project. (NB: There’s lots of other work going on at

MS. This just happens to be mine.)
• New/experimental languages: Fortress (Sun), Cω (Microsoft).
• Lots of other experimental extensions, new languages, etc.

(Some of them have been around for years in academia, but are
still experimental rather than broadly used in commercial code.)

• Transactional memory research (Intel, Microsoft, Sun, …).

Concurrency Tools in 2005 and BeyondConcurrency Tools in 2005 and Beyond

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 11

20

The Concur project aims to:The Concur project aims to:
•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

Concur GoalsConcur Goals

21

Concur GoalsConcur Goals
The Concur project aims to:The Concur project aims to:

•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

above “threads + locks”

in particular C++ right now

e.g., coarse out-of-process,
long-lived in-process,

loop/data parallel

that they can reason about
easily and that is toolable

race-free and deadlock-free
by construction

exe runs well on 1 & 2-core,
“better” (responsiveness or

throughput) on 8-core,
better still on 64-core, …

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 12

22

The Concur project aims to:The Concur project aims to:
•• define higherdefine higher--level abstractionslevel abstractions
•• for todayfor today’’s imperative languagess imperative languages
•• that evenly support the range of concurrency granularitiesthat evenly support the range of concurrency granularities
•• to let developers write correct and efficient concurrent appsto let developers write correct and efficient concurrent apps
•• with lots of latent parallelism (and not lots of latent bugs)with lots of latent parallelism (and not lots of latent bugs)
•• mapped to the usermapped to the user’’s hardware to s hardware to reenable the free lunch.reenable the free lunch.

Eliminate/reduce Eliminate/reduce ““threads+locksthreads+locks””::
•• Blocking and reentrancy:Blocking and reentrancy: Never silently or by default, Never silently or by default,

always explicit and controlled by higheralways explicit and controlled by higher--level abstractions.level abstractions.
•• Isolation:Isolation: On active object boundaries + ownership semantics On active object boundaries + ownership semantics

(e.g., transfer/lending). Reduce mutable sharing (e.g., transfer/lending). Reduce mutable sharing & & locking.locking.
•• Locks:Locks: Declarative support for associating data with locks, Declarative support for associating data with locks,

expressing lock levels, etc. Support static/dynamic analysis.expressing lock levels, etc. Support static/dynamic analysis.

Concur GoalsConcur Goals

23

50,00050,000’’ View: Producing the SeaView: Producing the Sea
Active objects/blocks.

active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

Active objects/blocks.
active C c;
c.f(); // these calls are nonblocking; each method
c.g(); // call automatically enqueues message for c
… // this code can execute in parallel with f & g

x = active { /*…*/ return foo(10); }; // do some work asynchronously
y = active { a->b(c) }; // evaluate expr asynchronously

z = x.wait() * y.wait(); // express join points via futures

Parallel algorithms (sketch, under development).
for_each(c.depth_first(), f); // sequential
for_each(c.depth_first(), f, parallel); // fully parallel
for_each(c.depth_first(), f, ordered); // ordered parallel

Gaining/losing concurrency is explicit: active and wait.

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 13

24

Nutshell summary:
• Each active object conceptually runs on its own thread.
• Method calls from other threads are async messages

processed serially ⇒ atomic w.r.t. each other, so no need to
lock the object internally or externally.

• Member data can’t be dangerously exposed.
• Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Nutshell summary:
• Each active object conceptually runs on its own thread.
•• Method calls from other threads are async messages Method calls from other threads are async messages

processed serially processed serially ⇒⇒ atomic atomic w.r.tw.r.t. each other, so no need to . each other, so no need to
lock the object internally or externally.lock the object internally or externally.

•• Member data canMember data can’’t be dangerously exposed.t be dangerously exposed.
•• Default mainline is a prioritized FIFO pump.Default mainline is a prioritized FIFO pump.
• Expressing thread/task lifetimes as object lifetimes lets us

exploit existing rich language semantics.
active class C {
public:

void f() { … }
};
// in calling code, using a C object
active C c;
c.f(); // call is nonblocking
… // this code can execute in parallel with c.f()

Active Objects and MessagesActive Objects and Messages

25

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

Return values are future values:
• Return values (and “out” arguments) from async calls cannot

be used until an explicit wait for the future to materialize.
future<double> tot = calc.TotalOrders(); // call is nonblocking
… potentially lots of work … // parallel work
DoSomethingWith(tot.wait()); // explicitly wait to accept

Why require explicit wait? Four reasons:
• No silent loss of concurrency (e.g., early “logFile << tot;”).
• Explicit block point for writing into lent objects (“out” args).
• Explicit point for emitting exceptions.
• Need to be able to pass futures onward to other code (e.g.,

DoSomethingWith(tot) ≠ DoSomethingWith(tot.wait())).

FuturesFutures

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 14

26

Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):
for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism

27

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 15

28

An Experiment: Parameterized ParallelismAn Experiment: Parameterized Parallelism
Motivation (in DavidMotivation (in David’’s Little Language syntax):s Little Language syntax):

for x in for x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))
ordered ordered forallforall x in x in c.depth_first(rc.depth_first(r) do) do f(xf(x))

•• Do these need explicit language support, or can they be a librarDo these need explicit language support, or can they be a library?y?

Concur code (in todayConcur code (in today’’s prototype):s prototype):
for_eachfor_each((cc..depth_firstdepth_first(), f);(), f); for_eachfor_each((cc..breadth_firstbreadth_first(), f);(), f);
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, parallel, parallel);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, parallel , parallel););
for_eachfor_each((cc..depth_firstdepth_first(), f(), f, ordered, ordered);); for_eachfor_each((cc..breadth_firstbreadth_first(), f(), f, ordered, ordered););

•• In STL, In STL, (1) containers(1) containers and and (2) algorithms(2) algorithms are orthogonal (additive). are orthogonal (additive).
Now make Now make (3) traversal (3) traversal and and (4) concurrency policy (4) concurrency policy orthogonal too.orthogonal too.

Example uses:Example uses:
for_each(for_each(c.c.depth_firstdepth_first(), _1 += 42, (), _1 += 42, parallelparallel);); // add 42 to each// add 42 to each
for_each(for_each(c.c.in_orderin_order(), (), coutcout << _1 << _1 /*, sequential*//*, sequential*/);); // output to console// output to console

•• (NB: (NB: ““_1 += 42_1 += 42”” and and ““coutcout << _1<< _1”” leverages Boostleverages Boost’’s Lambda library s Lambda library
temporarily until we add lambda support in the language.)temporarily until we add lambda support in the language.)

29

A Quick Look Under the HoodA Quick Look Under the Hood……
Calling code:Calling code:

for_each(for_each(cc..depth_firstdepth_first(), (), f, orderedf, ordered););
•• (Instead of (Instead of ““c.depth_firstc.depth_first()()””, could also use more STL, could also use more STL--ish style ish style

““c.depth_first().beginc.depth_first().begin(), (), c.depth_first().endc.depth_first().end()()””.).)

What gets invoked:What gets invoked:
for_each<for_each<Range,Func,ConcRange,Func,Conc>(>(rr, , funcfunc, , concconc););

rr.Traverse.Traverse<<Func,ConcFunc,Conc>(>(funcfunc, , concconc););
rr.DoTraverse.DoTraverse<<Func,ConcFunc,Conc>(>(funcfunc, , concconc, , rootroot););

concconc.do.do({ ({ DoTraverseDoTraverse((funcfunc, , concconc, , leftleft)) });});
concconc.do.do({ ({ DoTraverseDoTraverse((funcfunc, , concconc, , rightright)) });});
concconc.wait.wait();();
concconc.do.do({ ({ funcfunc(p(p-->value) });>value) });

•• Concurrency policy (Concurrency policy (concconc) defines .unordered() and .ordered():) defines .unordered() and .ordered():
sequentialsequential: Do runs : Do runs opop synchronously, wait is nosynchronously, wait is no--op.op.
parallelparallel: Do runs : Do runs active{active{opop}} asynchronously, wait is noasynchronously, wait is no--op.op.
orderedordered: Do runs : Do runs active{active{opop}} async, wait async, wait wait()swait()s on the doon the do’’s.s.

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 16

30

Interacting
Infrastructure

Clusters of termsClusters of terms
AcquireAcquire
ReleaseRelease
ScheduleSchedule
VirtualVirtual
Read?Read?
WriteWrite
OpenOpen

TransactionTransaction
AtomicAtomic
UpdateUpdate
AssociativeAssociative
ConsistentConsistent
ContentionContention
OverheadOverhead
InvariantInvariant
SerializableSerializable
LocksLocks
Transactional Transactional
memorymemory

ThroughputThroughput
HomogenousHomogenous
AndAnd--
parallelismparallelism
FineFine--graingrain
ForkFork--joinjoin
OverheadOverhead
SystolicSystolic
DataData--drivendriven
NestedNested
HierarchicalHierarchical
PerformancePerformance
Parallel Parallel
algorithmsalgorithms

ResponsivenessResponsiveness
InteractiveInteractive
DialogueDialogue
ProtocolProtocol
CancelCancel
DismissDismiss
FairnessFairness
PriorityPriority
MessageMessage
TimeoutTimeout
Active objectsActive objects
Active blocksActive blocks
FuturesFutures
RendezvousRendezvous

Asynchronous
Agents

Concurrent
Collections

Real
Resources

31

SummarySummary
What you need to know about concurrencyWhat you need to know about concurrency

ItIt’’s heres here
parallelism has long been the parallelism has long been the ““next big thingnext big thing”” –– the future is nowthe future is now

everybodyeverybody’’s doing it (because they have to)s doing it (because they have to)

It will directly affect the way we write softwareIt will directly affect the way we write software
the free lunch is overthe free lunch is over –– for sequential CPUfor sequential CPU--bound appsbound apps

only apps with lots of latent concurrency regain the perf. free only apps with lots of latent concurrency regain the perf. free lunchlunch
(side benefit: responsiveness, the other reason to want async co(side benefit: responsiveness, the other reason to want async code) de)

languages wonlanguages won’’t be able to ignore this and stay relevantt be able to ignore this and stay relevant

The software industry has a lot of work to doThe software industry has a lot of work to do
a generational advance >OO to move beyond a generational advance >OO to move beyond ““threads+locksthreads+locks””

key: incrementally adoptable extensions for existing languageskey: incrementally adoptable extensions for existing languages

Herb Sutter Software and the
Concurrency Revolution

Xerox PARC Forum
March 15, 2006 17

32

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first coined the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“Threads and memory model for C++” working group page
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

• Lots of links to current WG21 papers and other useful
background reading on memory models and atomic operations.

“The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

• The article that first coined the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

“Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=332

• Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

“Threads and memory model for C++” working group page
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

• Lots of links to current WG21 papers and other useful
background reading on memory models and atomic operations.

Further ReadingFurther Reading

