
Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 1

Software and the

Concurrency

Revolution

Herb Sutter

2

A: The world’s fastest supercomputer, with up to

4 processors, 128MB RAM, 942 MFLOPS (peak).

Q: What is a 1984 Cray X-MP? (Or a fractional 2005 vintage Xbox…)

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 2

Truths

Consequences

Futures

The Last Slide First
 Although driven by hardware changes, the concurrency

revolution is primarily a software revolution.

 Parallel hardware is not “more of the same.”
 It’s a fundamentally different mainstream hardware architecture,

even if the instruction set looks the same. (But using the same ISA
does give us a great compatibility/migration story.)

 Software requires the most changes to regain the “free lunch.”
 The concurrency sea change impacts the entire software stack:

Tools, languages, libraries, runtimes, operating systems.

 No programming language can ignore it and remain relevant.

 (Side benefit: Responsiveness, the other reason to want async code.)

 Software is also the gating factor.
 We will now do for concurrency what we did for OO and GUIs.

 Beyond the gate, hardware concurrency is coming
more and sooner than most people yet believe.

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 3

Each Year We Get Faster More Processors

Historically: Boost single-

stream performance via

more complex chips.

Now: Deliver more cores

per chip (+ GPU, NIC, SoC).

The free lunch is over for

today’s sequential apps

and many concurrent

apps. We need killer apps

with lots of latent

parallelism.

A generational advance

>OO is necessary to get

above the “threads+locks”

programming model.

Montecito

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Moore’s
Law

Each Year We Get Faster More Processors

Historically: Boost single-

stream performance via

more complex chips.

Now: Deliver more cores

per chip (+ GPU, NIC, SoC).

The free lunch is over for

today’s sequential apps

and many concurrent

apps. We need killer apps

with lots of latent

parallelism.

A generational advance

>OO is necessary to get

above the “threads+locks”

programming model.

Montecito

Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

Pentium

386

Moore’s
Law

1.7Bt ÷ 4.5Mt = ~100 P55Cs + 16 MB L3$

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 4

Educational State of the Union: May 2007

 We have achieved general awareness.
 Most people know that “the free lunch is over” for sequential

applications, and that the future is multicore and manycore.

 But few people really yet believe the magnitude, speed,
and gating factor of the change:
 Magnitude: Comparable to the GUI revolution plus moving to

a new hardware platform, simultaneously. Enabling manycore
affects the entire software stack, from tools to languages to
frameworks/libraries to runtimes.

 Speed: (Recall: Intel could build 100-Pentium chips today if
they wanted to.) 100-way HW concurrency could be available
in commodity desktops as soon as the year …

 Gating factor: … manycore-exploiting software is available.

Truths

Consequences

Futures

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 5

The Issue Is (Mostly) On the Client

 “Solved”: Server apps (e.g., DB servers, web services).

 Lots of independent requests – one thread per request is easy.

 Typical to execute many copies of the same code.

 Shared data usually via structured databases:
Automatic implicit concurrency control via transactions.

 With some care, “concurrency problem is already solved” here.

 Not solved: Typical client apps (i.e., not Photoshop).

 Somehow employ many threads per user “request.”

 Highly atypical to execute many copies of the same code.

 Shared data in unstructured shared memory:
Error prone explicit locking – where are the transactions?

A Tale of Six Software Waves

 Each was born during 1958-73, bided its time until 1990s/00s, then took
5+ years to build a mature tool/language/framework/runtime ecosystem.

Objects GenericsGCGUIs Net

Concurrency

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 6

Comparative Impacts Across the Stack

GUIs Objects GC Generics Web Concurrency

Application
programming
model

Libraries and
frameworks

Languages
and compilers

Runtimes
and OS

Tools (design,
measure, test)

Extent of impact and/or enabling importance
 = Some, could drive one major product release
 = Major, could drive more than one major product release
 = New way of thinking / essential enabler, or multiple major releases

O(1), O(K), or O(N) Concurrency?

12

 1. Sequential apps.
 The free lunch is over (if CPU-bound): Flat or

merely incremental perf. improvements.
 Potentially poor responsiveness.

 2. Explicitly threaded apps.
 Hardwired # of threads that prefer

K CPUs (for a given input workload).

 Can penalize <K CPUs,
doesn’t scale >K CPUs.

 3. Scalable concurrent apps.
 Workload decomposed into a

“sea” of heterogeneous chores.
 Lots of latent concurrency

we can map down to N cores.

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 7

An OO for Concurrency

OO

Fortran, C, …

asm

threads + locks

semaphores

Three Pillars of the Dawn
A Framework for Evaluating Concurrency

Asynchronous
Agents

Concurrent
Collections

Mutable
Shared State

Summary Tasks that run
independently and
communicate via
messages

Operations on groups
of things; exploit
parallelism in data and
algorithm structures

Avoid races by
synchronizing mutable
objects in shared
memory

Examples GUIs, background
printing, disk/net
access

Trees, quicksort,
compilation

Locked data (99%),
lock-free libraries
(written by wizards)

Key metrics Responsiveness Throughput,
manycore scalability

Race-free,
deadlock-free

Requirements Isolation, messaging Low overhead Composability

Today’s
abstractions

Threads,
message queues

Thread pools,
OpenMP

Locks

Possible new
abstractions

Active objects,
futures

Chores, futures,
parallel STL, PLINQ

Transactional
memory, declarative
support for locks

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 8

15

The Trouble With Locks

 How may I harm thee? Let me count the ways:
{
Lock lock1(mutTable1);
Lock lock2(mutTable2);
table1.erase(x);
table2.insert(x);

}

 Locks are the best we have, and known to be inadequate:
 Which lock? The connection between a lock and the data it protects

exists primarily in the mind of a programmer.
 Deadlock? If the mutexes aren’t acquired in the same order.
 Simplicity or scalability? Coarse-grained locks are simpler to use

correctly, but easily become bottlenecks.
 Lost wake-ups? Blocking typically uses condition variables, and it’s

easy to forget to signal the “correct” ones. (Example coming up.)
 Not composable. In today’s world, this is a deadly sin.

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 9

Enter Transactional Memory

 A transactional programming model:
atomic {
table1.erase(x);
table2.insert(x);

}
 Idea: Version memory ‘like a database.’ Automatic concurrency

control, rollback and retry for competing transactions.

 Benefits:
 No need to remember which lock to take.
 No deadlock: No need to remember a sync order discipline.
 Both fine-grained and scalable without sacrificing correctness.
 No wake-up calls as atomic blocks are automatically re-run.
 Best of all: Composable. Can once again build a big (correct)

program out of smaller (correct) programs.

 Drawbacks:
 Still active research. And the elephant in the room is I/O (more later).

Enter Transactional Memory (2)

 What if we want to block if x isn’t in table1 yet?
 Today, we’d typically use a wake-up: Wait on a condition variable,

and have every thread inserting into table1 remember to signal the
right cv. Tedious, error-prone, etc.

 Instead:
atomic {
if(table1.find(x) == table1.end())
retry;

table1.erase(x);
table2.insert(x);

}

 retry restarts the current atomic block from the beginning.

 Blocking is entirely modular: The call to retry might be deeply buried
inside the implementation of debit, or of credit, or both.

 Can use transaction log to defer re-running until at least one memory
location read by the transaction has changed.

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 10

A “4-Step Program” For the Lock Addiction

 Greatly reduce locks. (Alas, not “eliminate.”)

1. Enable transactional programming: Transactional memory is
our best hope. Composable atomic { … } blocks. Naturally
enables speculative execution. (The elephant: Allowing I/O.
The Achilles’ heel: Some resources are not transactable.)

2. Abstractions to reduce “shared”:
Messages. Futures. Private data (e.g., active objects).

3. Techniques to reduce “mutable”:
Immutable objects. Internally versioned objects.

4. Some locks will remain. Let the programmer declare:

 Which shared objects are protected by which locks.

 Lock hierarchies (caveat: also not composable).

An OO for Concurrency

OO

Fortran, C, …

asm

threads + locks

semaphores

active objects,
chores, and

futures

parallel
algorithms

atomic { }
locks:

declare intent

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 11

Truths

Consequences

Futures

4 4

8 8

16 16

32 32

2006 2007 2008 2009 2010 2011 2012 2013

OoO - cores

A Good Question:

How Many Cores Are You Coding For?

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 12

Future Many-

Core Systems

Complex core
(OoO, prediction,
pipelining, speculation)

Simple core (InO)

All large cores

Mixed large & small cores
(legacy code & Amdahl’s Law)

All small cores

128

256 256

512

32
64 64

128

4 4 8 8 16 16 32 32

2006 2007 2008 2009 2010 2011 2012 2013

InO - threads

InO - cores

OoO - cores

A Better Question: How Many

Hardware Threads Are You Coding For?

th
e

 t
ru

th
 i
s
 s

o
m

e
w

h
e

re
 i
n

 h
e

re

Software and the

Concurrency Revolution

Herb Sutter
Software Architect, Microsoft

Software Development Consultant, www.gotw.ca/training

© 2007 Herb Sutter Page: 13

The First Slide Last
 Although driven by hardware changes, the concurrency

revolution is primarily a software revolution.

 Parallel hardware is not “more of the same.”
 It’s a fundamentally different mainstream hardware architecture,

even if the instruction set looks the same. (But using the same ISA
does give us a great compatibility/migration story.)

 Software requires the most changes to regain the “free lunch.”
 The concurrency sea change impacts the entire software stack:

Tools, languages, libraries, runtimes, operating systems.

 No programming language can ignore it and remain relevant.

 (Side benefit: Responsiveness, the other reason to want async code.)

 Software is also the gating factor.
 We will now do for concurrency what we did for OO and GUIs.

 Beyond the gate, hardware concurrency is coming
more and sooner than most people yet believe.

For More Information

 “The Free Lunch Is Over”
(Dr. Dobb’s Journal, March 2005)
http://www.gotw.ca/publications/concurrency-ddj.htm

 The article that first used the terms “the free lunch is over”
and “concurrency revolution” to describe the sea change.

 “Software and the Concurrency Revolution”
(with Jim Larus; ACM Queue, September 2005)
http://acmqueue.com/modules.php?name=Content&pa=
showpage&pid=332

 Why locks, functional languages, and other silver bullets aren’t
the answer, and observations on what we need for a great leap
forward in languages and also in tools.

